Abstract
Purpose: Identification of phosphorus (P) species is essential to understand the transformation and availability of P in soil. However, P species as affected by land use change along with fertilization has received little attention in a sub-alpine humid soil of Tibet plateau. Materials and methods: In this study, we investigated the changes in P species using Hedley sequential fractionation and liquid-state 31P-NMR spectroscopy in soils under meadow (M) and under cropland with (CF) or without (CNF) long-term fertilization for 26 years in a sub-alpine cold-humid region in Qinghai–Tibet plateau. Results and discussion: Land-use change and long-term fertilization affected the status and fractions of P. A strong mineralization of organic P (OP) was induced by losing protection of soil organic matter (SOM) and Fe and Al oxides during land-use change and resulted in an increase of orthophosphate (from 56.49 mg kg−1 in M soils to 130.07 mg kg−1 in CNF soils) and great decreases of orthophosphate diesters (diester-P, from 23.35 mg kg−1 in M soils to 10.68 mg kg−1 in CNF soils) and monoesters (from 336.04 mg kg−1 in M soils to 73.26 mg kg−1 in CNF soils). Long-term fertilization boosted P supply but failed to reclaim soil diester-P (from 10.68 mg kg−1 in CNF soils to 7.79 mg kg−1 in CF soils). This may be due to the fragile protection from the combination of SOM with diester-P when long-term fertilization had only improved SOM in a slight extent. Conclusions: These results suggest that SOM plays an important role in the soil P cycling and prevents OP mineralization and losses from soil. It is recommended that optimization of soil nutrient management integrated with SOM was required to improve the P use efficiency for the development of sustainable agriculture.
Original language | English |
---|---|
Journal | Journal of Soils and Sediments |
Volume | 19 |
Issue number | 3 |
Pages (from-to) | 1109–1119 |
ISSN | 1439-0108 |
DOIs | |
Publication status | Published - 11 Mar 2019 |
Keywords
- Compost
- Hedley sequential fractionation
- Liquid-state P-NMR
- Meadow soil
- Organic phosphates