TY - JOUR
T1 - Repair of DNA damage induced by anthanthrene, a polycyclic aromatic hydrocarbon (PAH) without bay or fjord regions
AU - Madsen, Claus Desler
AU - Johannessen, Christian
AU - Rasmussen, Lene Juel
N1 - Keywords: Cell Line, Transformed; Comet Assay; DNA; DNA Damage; DNA Repair; Humans; Polycyclic Compounds; Water Pollutants, Chemical
PY - 2009
Y1 - 2009
N2 - Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants, formed during incomplete burning of coal, oil and gas. Several PAHs have carcinogenic and mutagenic potencies, but these compounds must be activated in order to exert their mutagenic effects. One of the principal pathways proposed for metabolic activation of PAHs involves the cytochrome P450 enzymes. The DNA damaging potential of cytochrome P450-activated PAHs is generally associated with their bay and fjord regions, and the DNA repair response of PAHs containing such regions has been thoroughly studied. However, little is known about the repair of DNA damage resulting from metabolites from PAHs without bay and fjord regions. We have investigated the six-ringed PAH anthanthrene (dibenzo[def,mno]chrysene), which does not posses bay or fjord motifs. We analyzed the repair profile of human cell extracts and of cell cultures in response to DNA damage induced by cytochrome P450-activated anthanthrene. In cell extracts, functional nucleotide excision repair (NER) and mismatch repair (MMR) activities were necessary to trigger a response to anthanthrene metabolite-induced DNA damage. In cell cultures, NER was responsible for the repair of anthanthrene metabolite-induced DNA damage. However, when the NER pathway was inactivated, a residual repair pathway performed the DNA repair.
AB - Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants, formed during incomplete burning of coal, oil and gas. Several PAHs have carcinogenic and mutagenic potencies, but these compounds must be activated in order to exert their mutagenic effects. One of the principal pathways proposed for metabolic activation of PAHs involves the cytochrome P450 enzymes. The DNA damaging potential of cytochrome P450-activated PAHs is generally associated with their bay and fjord regions, and the DNA repair response of PAHs containing such regions has been thoroughly studied. However, little is known about the repair of DNA damage resulting from metabolites from PAHs without bay and fjord regions. We have investigated the six-ringed PAH anthanthrene (dibenzo[def,mno]chrysene), which does not posses bay or fjord motifs. We analyzed the repair profile of human cell extracts and of cell cultures in response to DNA damage induced by cytochrome P450-activated anthanthrene. In cell extracts, functional nucleotide excision repair (NER) and mismatch repair (MMR) activities were necessary to trigger a response to anthanthrene metabolite-induced DNA damage. In cell cultures, NER was responsible for the repair of anthanthrene metabolite-induced DNA damage. However, when the NER pathway was inactivated, a residual repair pathway performed the DNA repair.
U2 - 10.1016/j.cbi.2008.10.056
DO - 10.1016/j.cbi.2008.10.056
M3 - Journal article
C2 - 19046955
SN - 0009-2797
VL - 177
SP - 212
EP - 217
JO - Chemico-Biological Interactions
JF - Chemico-Biological Interactions
IS - 3
ER -