TY - JOUR
T1 - Renoprotective effects of brown adipose tissue activation in diabetic mice
AU - Cai, Ying-Ying
AU - Zhang, Hong-Bin
AU - Fan, Cun-Xia
AU - Zeng, Yan-Mei
AU - Zou, Shao-Zhou
AU - Wu, Chun-Yan
AU - Wang, Ling
AU - Fang, Shu
AU - Li, Ping
AU - Xue, Yao-Ming
AU - Guan, Mei-Ping
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Background: Brown adipose tissue (BAT) has been regarded as a potential target organ to combat obesity and related metabolic disorders. However, the effect of BAT activation on the development of diabetic kidney disease (DKD) remains unclear. Methods: Diabetic mice were induced by streptozotocin (STZ) combined with a high-fat diet. To activate BAT, mice were administered 1 mg/kg per day, i.p., CL316,243, a β3-adrenergic receptor agonist, for 4 weeks. Blood glucose, serum lipids, adipokines, 24-hour urinary albumin, 8-hydroxydeoxyguanosine (8-OHdG), and circulating microRNA (miRNA) levels were analyzed, in addition to renal pathology. Histological changes (fibrosis, inflammation) were evaluated in the kidneys, as was the expression of oxidative stress-related genes. Renal signaling pathways (fibroblast growth factor [Fgf]21/β-klotho/FGF receptor 1c and AMP-activated protein kinase[AMPK]/sirtuin 1 [Sirt1]/peroxisome proliferator-activated receptor-γ coactivator-1α [Pgc1α]) were also evaluated. Results: Compared with untreated STZ-diabetic mice, CL316,243 treatment reduced blood glucose, albeit not significantly (20.58 ± 3.55 vs 23.60 ± 3.90 mM), and significantly decreased triglycerides and low-density lipoprotein cholesterol and increased high-density lipoprotein cholesterol. Simultaneously, BAT activation significantly decreased 24-hour urinary albumin (34.21 ± 6.28 vs 70.46 ± 15.81 μg/24 h; P < 0.05) and 8-OHdG, improved renal fibrosis, inflammation, and oxidative stress, and ameliorated renal morphological abnormalities. In addition to enhancing BAT activity, CL316,243 significantly increased serum adiponectin concentrations and renal Fgf21 sensitivity, and reactivated the renal AMPK/Sirt1/Pgc1α signaling pathway. Furthermore, CL316,243 treatment increased levels of some circulating miRNAs and downregulated expression of their target genes in the kidney. Conclusions: Activating BAT could improve kidney injury in diabetic mice via metabolic improvements and renal AMPK activation by beneficial adipokines and miRNAs.
AB - Background: Brown adipose tissue (BAT) has been regarded as a potential target organ to combat obesity and related metabolic disorders. However, the effect of BAT activation on the development of diabetic kidney disease (DKD) remains unclear. Methods: Diabetic mice were induced by streptozotocin (STZ) combined with a high-fat diet. To activate BAT, mice were administered 1 mg/kg per day, i.p., CL316,243, a β3-adrenergic receptor agonist, for 4 weeks. Blood glucose, serum lipids, adipokines, 24-hour urinary albumin, 8-hydroxydeoxyguanosine (8-OHdG), and circulating microRNA (miRNA) levels were analyzed, in addition to renal pathology. Histological changes (fibrosis, inflammation) were evaluated in the kidneys, as was the expression of oxidative stress-related genes. Renal signaling pathways (fibroblast growth factor [Fgf]21/β-klotho/FGF receptor 1c and AMP-activated protein kinase[AMPK]/sirtuin 1 [Sirt1]/peroxisome proliferator-activated receptor-γ coactivator-1α [Pgc1α]) were also evaluated. Results: Compared with untreated STZ-diabetic mice, CL316,243 treatment reduced blood glucose, albeit not significantly (20.58 ± 3.55 vs 23.60 ± 3.90 mM), and significantly decreased triglycerides and low-density lipoprotein cholesterol and increased high-density lipoprotein cholesterol. Simultaneously, BAT activation significantly decreased 24-hour urinary albumin (34.21 ± 6.28 vs 70.46 ± 15.81 μg/24 h; P < 0.05) and 8-OHdG, improved renal fibrosis, inflammation, and oxidative stress, and ameliorated renal morphological abnormalities. In addition to enhancing BAT activity, CL316,243 significantly increased serum adiponectin concentrations and renal Fgf21 sensitivity, and reactivated the renal AMPK/Sirt1/Pgc1α signaling pathway. Furthermore, CL316,243 treatment increased levels of some circulating miRNAs and downregulated expression of their target genes in the kidney. Conclusions: Activating BAT could improve kidney injury in diabetic mice via metabolic improvements and renal AMPK activation by beneficial adipokines and miRNAs.
KW - adipokine
KW - brown adipose tissue
KW - CL316
KW - 243
KW - diabetic kidney disease
KW - microRNA
U2 - 10.1111/1753-0407.12938
DO - 10.1111/1753-0407.12938
M3 - Journal article
C2 - 31020790
SN - 1753-0393
VL - 11
SP - 958
EP - 970
JO - Journal of Diabetes
JF - Journal of Diabetes
IS - 12
ER -