TY - JOUR
T1 - Renal dysfunction in patients with heart failure with preserved versus reduced ejection fraction
T2 - impact of the new Chronic Kidney Disease-Epidemiology Collaboration Group formula
AU - McAlister, Finlay A
AU - Ezekowitz, Justin
AU - Tarantini, Luigi
AU - Squire, Iain
AU - Komajda, Michel
AU - Bayes-Genis, Antoni
AU - Gotsman, Israel
AU - Whalley, Gillian
AU - Earle, Nikki
AU - Poppe, Katrina K
AU - Doughty, Robert N
AU - Meta-analysis Global Group in Chronic Heart Failure (MAGGIC) Investigators
AU - Boesgaard, Søren
AU - Wendelboe Nielsen, Olav
AU - Torp-Pedersen, Christian Tobias
PY - 2012/5
Y1 - 2012/5
N2 - Background-Prior studies in heart failure (HF) have used the Modification of Diet in Renal Disease (MDRD) equation to calculate estimated glomerular filtration rate (eGFR). The Chronic Kidney Disease-Epidemiology Collaboration Group (CKD-EPI) equation provides a more-accurate eGFR than the MDRD when compared against the radionuclide gold standard. The prevalence and prognostic import of renal dysfunction in HF if the CKD-EPI equation is used rather than the MDRD is uncertain. Methods and Results-We used individual patient data from 25 prospective studies to stratify patients with HF by eGFR using the CKD-EPI and the MDRD equations and examined survival across eGFR strata. In 20 754 patients (15 962 with HF with reduced ejection fraction [HF-REF] and 4792 with HF with preserved ejection fraction [HF-PEF]; Mean age, 68 years; deaths per 1000 patient-years, 151; 95% CI, 146-155), 10 589 (51%) and 11 422 (55%) had an eGFR 60 mL/min using the MDRD and CKD-EPI equations, respectively. Use of the CKD-EPI equation resulted in 3760 (18%) patients being reclassified into different eGFR risk strata; 3089 (82%) were placed in a lower eGFR category and exhibited higher all-cause mortality rates (net reclassification improvement with CKD-EPI, 3.7%; 95% CI, 1.5%-5.9%). Reduced eGFR was a stronger predictor of all-cause mortality in HF-REF than in HF-PEF. Conclusions-Use of the CKD-EPI rather than the MDRD equation to calculate eGFR leads to higher estimates of renal dysfunction in HF and a more-accurate categorization of mortality risk. Renal function is more closely related to outcomes in HF-REF than in HF-PEF.
AB - Background-Prior studies in heart failure (HF) have used the Modification of Diet in Renal Disease (MDRD) equation to calculate estimated glomerular filtration rate (eGFR). The Chronic Kidney Disease-Epidemiology Collaboration Group (CKD-EPI) equation provides a more-accurate eGFR than the MDRD when compared against the radionuclide gold standard. The prevalence and prognostic import of renal dysfunction in HF if the CKD-EPI equation is used rather than the MDRD is uncertain. Methods and Results-We used individual patient data from 25 prospective studies to stratify patients with HF by eGFR using the CKD-EPI and the MDRD equations and examined survival across eGFR strata. In 20 754 patients (15 962 with HF with reduced ejection fraction [HF-REF] and 4792 with HF with preserved ejection fraction [HF-PEF]; Mean age, 68 years; deaths per 1000 patient-years, 151; 95% CI, 146-155), 10 589 (51%) and 11 422 (55%) had an eGFR 60 mL/min using the MDRD and CKD-EPI equations, respectively. Use of the CKD-EPI equation resulted in 3760 (18%) patients being reclassified into different eGFR risk strata; 3089 (82%) were placed in a lower eGFR category and exhibited higher all-cause mortality rates (net reclassification improvement with CKD-EPI, 3.7%; 95% CI, 1.5%-5.9%). Reduced eGFR was a stronger predictor of all-cause mortality in HF-REF than in HF-PEF. Conclusions-Use of the CKD-EPI rather than the MDRD equation to calculate eGFR leads to higher estimates of renal dysfunction in HF and a more-accurate categorization of mortality risk. Renal function is more closely related to outcomes in HF-REF than in HF-PEF.
U2 - 10.1161/CIRCHEARTFAILURE.111.966242
DO - 10.1161/CIRCHEARTFAILURE.111.966242
M3 - Journal article
SN - 1941-3289
VL - 5
SP - 309
EP - 314
JO - Circulation: Heart Failure
JF - Circulation: Heart Failure
IS - 3
ER -