Regulation of replication fork progression through histone supply and demand.

Anja Groth, Armelle Corpet, Adam J L Cook, Daniele Roche, Jiri Bartek, Jiri Lukas, Geneviève Almouzni

    297 Citations (Scopus)

    Abstract

    DNA replication in eukaryotes requires nucleosome disruption ahead of the replication fork and reassembly behind. An unresolved issue concerns how histone dynamics are coordinated with fork progression to maintain chromosomal stability. Here, we characterize a complex in which the human histone chaperone Asf1 and MCM2-7, the putative replicative helicase, are connected through a histone H3-H4 bridge. Depletion of Asf1 by RNA interference impedes DNA unwinding at replication sites, and similar defects arise from overproduction of new histone H3-H4 that compromises Asf1 function. These data link Asf1 chaperone function, histone supply, and replicative unwinding of DNA in chromatin. We propose that Asf1, as a histone acceptor and donor, handles parental and new histones at the replication fork via an Asf1-(H3-H4)-MCM2-7 intermediate and thus provides a means to fine-tune replication fork progression and histone supply and demand.
    Original languageEnglish
    JournalScience
    Volume318
    Issue number5858
    Pages (from-to)1928-31
    Number of pages3
    ISSN0036-8075
    DOIs
    Publication statusPublished - 2007

    Fingerprint

    Dive into the research topics of 'Regulation of replication fork progression through histone supply and demand.'. Together they form a unique fingerprint.

    Cite this