TY - JOUR
T1 - RedNemo
T2 - topology-based PPI network reconstruction via repeated diffusion with neighborhood modifications
AU - Alkan, Ferhat
AU - Erten, Cesim
N1 - © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: [email protected].
PY - 2017/2/15
Y1 - 2017/2/15
N2 - Motivation: Analysis of protein-protein interaction (PPI) networks provides invaluable insight into several systems biology problems. High-throughput experimental techniques together with computational methods provide large-scale PPI networks. However, a major issue with these networks is their erroneous nature; they contain false-positive interactions and usually many more false-negatives. Recently, several computational methods have been proposed for network reconstruction based on topology, where given an input PPI network the goal is to reconstruct the network by identifying false-positives/-negatives as correctly as possible. Results: We observe that the existing topology-based network reconstruction algorithms suffer several shortcomings. An important issue is regarding the scalability of their computational requirements, especially in terms of execution times, with the network sizes. They have only been tested on small-scale networks thus far and when applied on large-scale networks of popular PPI databases, the executions require unreasonable amounts of time, or may even crash without producing any output for some instances even after several months of execution. We provide an algorithm, RedNemo, for the topology-based network reconstruction problem. It provides more accurate networks than the alternatives as far as biological qualities measured in terms of most metrics based on gene ontology annotations. The recovery of a high-confidence network modified via random edge removals and rewirings is also better with RedNemo than with the alternatives under most of the experimented removal/rewiring ratios. Furthermore, through extensive tests on databases of varying sizes, we show that RedNemo achieves these results with much better running time performances.
AB - Motivation: Analysis of protein-protein interaction (PPI) networks provides invaluable insight into several systems biology problems. High-throughput experimental techniques together with computational methods provide large-scale PPI networks. However, a major issue with these networks is their erroneous nature; they contain false-positive interactions and usually many more false-negatives. Recently, several computational methods have been proposed for network reconstruction based on topology, where given an input PPI network the goal is to reconstruct the network by identifying false-positives/-negatives as correctly as possible. Results: We observe that the existing topology-based network reconstruction algorithms suffer several shortcomings. An important issue is regarding the scalability of their computational requirements, especially in terms of execution times, with the network sizes. They have only been tested on small-scale networks thus far and when applied on large-scale networks of popular PPI databases, the executions require unreasonable amounts of time, or may even crash without producing any output for some instances even after several months of execution. We provide an algorithm, RedNemo, for the topology-based network reconstruction problem. It provides more accurate networks than the alternatives as far as biological qualities measured in terms of most metrics based on gene ontology annotations. The recovery of a high-confidence network modified via random edge removals and rewirings is also better with RedNemo than with the alternatives under most of the experimented removal/rewiring ratios. Furthermore, through extensive tests on databases of varying sizes, we show that RedNemo achieves these results with much better running time performances.
U2 - 10.1093/bioinformatics/btw655
DO - 10.1093/bioinformatics/btw655
M3 - Journal article
C2 - 27797764
SN - 1367-4803
VL - 33
SP - 537
EP - 544
JO - Bioinformatics
JF - Bioinformatics
IS - 4
ER -