Rapid early Holocene ice retreat in West Greenland

Nicolaj Krog Larsen, Svend Visby Funder, Kurt H. Kjær, Kristian Kjellerup Kjeldsen, Mads Faurschou Knudsen, Henriette Linge

    49 Citations (Scopus)

    Abstract

    The possible demise of the Greenland ice sheet and its effect on global sea level rank among the most serious climate threats to society. To improve our knowledge about the future behaviour of the ice margin, we studied the ice sheet's response to early Holocene warming in West Greenland using 47 cosmogenic 10Be exposure ages, 26 optically-stimulated luminescence ages as well as 15 new and 28 previously published radiocarbon ages. Paired bedrock and boulder ages show that the entire area was covered by warm-based ice during the Last Glacial Maximum (LGM), although glacial erosion was insufficient to completely remove the upper rock surface containing 10Be inherited from a previous period of exposure in bedrock samples above an elevation of 800m. Our compilation of 10Be and 14C ages demonstrates that the ice sheet retreated from the outer-coast to the present ice margin between c. 11.4 and 10.4cal.kaBP in the Godthåbsfjord system and between 10.7±0.6 and 10.1±0.4ka ago in Buksefjord, whereas the coast at Sermilik became ice free at c. 10.5cal.kaBP. We find no significant changes in the retreat rates between the deep Godthåbsfjord system and the Buksefjord-Sermilik region, which is characterized by only a few narrow and shallow fjords. However, deglaciation was initiated c. 700-900 years earlier in the Godthåbsfjord system indicating that the deep fjords probably triggered land-based deglaciation by dynamic ice loss leading to an overall rapid early Holocene ice retreat and drawdown of the ice sheet in West Greenland. These results demonstrate that even if there was a topographic control on the onset of deglaciation, fast ice retreat is not restricted to deep fjord systems but may occur independently of the topographic setting.

    Original languageEnglish
    JournalQuaternary Science Reviews
    Volume92
    Pages (from-to)310-323
    Number of pages14
    ISSN0277-3791
    DOIs
    Publication statusPublished - 15 May 2014

    Fingerprint

    Dive into the research topics of 'Rapid early Holocene ice retreat in West Greenland'. Together they form a unique fingerprint.

    Cite this