Quantitative PET Imaging of Tissue Factor Expression Using 18F-labled Active Site Inhibited Factor VII

Carsten H Nielsen, Maria Erlandsson, Troels E Jeppesen, Mette M Jensen, Lotte K Kristensen, Jacob Madsen, Lars C Petersen, Andreas Kjaer

8 Citations (Scopus)

Abstract

Tissue factor (TF) is upregulated in many solid tumors, and its expression is linked to tumor angiogenesis, invasion, metastasis, and prognosis. A noninvasive assessment of tumor TF expression status is therefore of obvious clinical relevance. Factor VII is the natural ligand to TF. Here we report the development of a new PET tracer for specific imaging of TF using an 18F-labeled derivative of factor VII. Methods: Active site-inhibited factor VIIa (FVIIai) was obtained by inactivation with phenylalanine-phenylalanine-arginine-chloromethyl ketone. FVIIai was radiolabeled with N-succinimidyl 4-18F-fluorobenzoate and purified. The corresponding product, 18F-FVIIai, was injected into nude mice with subcutaneous human pancreatic xenograft tumors (BxPC-3) and investigated using small-animal PET/CT imaging 1, 2, and 4 h after injection. Ex vivo biodistribution was performed after the last imaging session, and tumor tissue was preserved for molecular analysis. A blocking experiment was performed in a second set of mice. The expression pattern of TF in the tumors was visualized by immunohistochemistry and the amount of TF in tumor homogenates was measured by enzyme-linked immunosorbent assay and correlated with the uptake of 18F-FVIIai in the tumors measured in vivo by PET imaging. Results: The PET images showed high uptake of 18F-FVIIai in the tumor regions, with a mean uptake of 2.5 ± 0.3 percentage injected dose per gram (%ID/g) (mean ± SEM) 4 h after injection of 7.3-9.3 MBq of 18F-FVIIai and with an average maximum uptake in the tumors of 7.1 ± 0.7%ID/g at 4 h. In comparison, the muscle uptake was 0.2 ± 0.01 %ID/g at 4 h. At 4 h, the tumors had the highest uptake of any organ. Blocking with FVIIai significantly reduced the uptake of 18F-FVIIai from 2.9 ± 0.1 to 1.4 ± 0.1 %ID/g (P , 0.001). The uptake of 18F-FVIIai measured in vivo by PET imaging correlated (r 5 0.72, P , 0.02) with TF protein level measured ex vivo. Conclusion: 18F-FVIIai is a promising PET tracer for specific and noninvasive imaging of tumor TF expression. The tracer merits further development and clinical translation, with potential to become a companion diagnostics for emerging TF-targeted therapies.

Original languageEnglish
JournalThe Journal of Nuclear Medicine
Volume57
Issue number1
Pages (from-to)89-95
Number of pages7
ISSN0161-5505
DOIs
Publication statusPublished - 1 Jan 2016

Fingerprint

Dive into the research topics of 'Quantitative PET Imaging of Tissue Factor Expression Using 18F-labled Active Site Inhibited Factor VII'. Together they form a unique fingerprint.

Cite this