Quantitative interaction screen of telomeric repeat-containing RNA reveals novel TERRA regulators

Marion Scheibe, Nausica Arnoult, Dennis Kappei, Frank Buchholz, Anabelle Decottignies, Falk Butter, Matthias Mann

45 Citations (Scopus)

Abstract

Telomeres are actively transcribed into telomeric repeat-containing RNA (TERRA), which has been implicated in the regulation of telomere length and heterochromatin formation. Here, we applied quantitative mass spectrometry (MS)-based proteomics to obtain a high-confidence interactome of TERRA. Using SILAC-labeled nuclear cell lysates in an RNA pull-down experiment and two different salt conditions, we distinguished 115 proteins binding specifically to TERRA out of a large set of background binders. While TERRA binders identified in two previous studies showed little overlap, using quantitative mass spectrometry we obtained many candidates reported in these two studies. To test whether novel candidates found here are involved in TERRA regulation, we performed an esiRNA-based interference analysis for 15 of them. Knockdown of 10 genes encoding candidate proteins significantly affected total cellular levels of TERRA, and RNAi of five candidates perturbed TERRA recruitment to telomeres. Notably, depletion of SRRT/ARS2, involved in miRNA processing, up-regulated both total and telomere-bound TERRA. Conversely, knockdown of MORF4L2, a component of the NuA4 histone acetyltransferase complex, reduced TERRA levels both globally and for telomere-bound TERRA. We thus identified new proteins involved in the homeostasis and telomeric abundance of TERRA, extending our knowledge of TERRA regulation.
Original languageEnglish
JournalGenome Research
ISSN1088-9051
DOIs
Publication statusPublished - Dec 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Quantitative interaction screen of telomeric repeat-containing RNA reveals novel TERRA regulators'. Together they form a unique fingerprint.

Cite this