TY - JOUR
T1 - Putative neuroprotective actions of N-acyl-ethanolamines
AU - Hansen, Harald S.
AU - Moesgaard, B.
AU - Petersen, G.
AU - Hansen, H.H.
PY - 2002/8/1
Y1 - 2002/8/1
N2 - N-Acyl-ethanolamines (NAEs) and their precursors, N-acyl-ethanolamine phospholipids (NAPEs), are present in the mammalian brain at levels of a few hundred picomoles/gram tissue and a few nanomoles/gram tissue, respectively. NAE-containing arachidonic acid is called anandamide, and it has attracted particular attention since it is a partial agonist for the cannabinoid receptors, for which 2-arachidonoylglycerol is the full agonist. In addition, anandamide may also activate the vanilloid receptor. Anandamide usually amounts to 1-10% of NAEs, as the vast majority of N-acyl groups are saturated and monounsaturated fatty acids. Formation of NAPE and NAE is catalyzed by an N-acyltransferase and an NAPE-hydrolyzing phospholipase D, respectively, two enzymes that have been characterized only preliminary. Interestingly, NAPEs and NAEs accumulate in the brain in response to neurodegenerative insults at a time when other phospholipids are subjected to rapid degradation. This is an important biosynthetic aspect of NAPE and NAE, as NAEs may be neuroprotective by a number of different mechanisms involving both receptor activation and non-receptor-mediated effects, e.g. by binding to cannabinoid receptors and interfering with ceramide turnover, respectively.
AB - N-Acyl-ethanolamines (NAEs) and their precursors, N-acyl-ethanolamine phospholipids (NAPEs), are present in the mammalian brain at levels of a few hundred picomoles/gram tissue and a few nanomoles/gram tissue, respectively. NAE-containing arachidonic acid is called anandamide, and it has attracted particular attention since it is a partial agonist for the cannabinoid receptors, for which 2-arachidonoylglycerol is the full agonist. In addition, anandamide may also activate the vanilloid receptor. Anandamide usually amounts to 1-10% of NAEs, as the vast majority of N-acyl groups are saturated and monounsaturated fatty acids. Formation of NAPE and NAE is catalyzed by an N-acyltransferase and an NAPE-hydrolyzing phospholipase D, respectively, two enzymes that have been characterized only preliminary. Interestingly, NAPEs and NAEs accumulate in the brain in response to neurodegenerative insults at a time when other phospholipids are subjected to rapid degradation. This is an important biosynthetic aspect of NAPE and NAE, as NAEs may be neuroprotective by a number of different mechanisms involving both receptor activation and non-receptor-mediated effects, e.g. by binding to cannabinoid receptors and interfering with ceramide turnover, respectively.
UR - http://www.scopus.com/inward/record.url?scp=0036669495&partnerID=8YFLogxK
U2 - 10.1016/S0163-7258(02)00251-6
DO - 10.1016/S0163-7258(02)00251-6
M3 - Journal article
AN - SCOPUS:0036669495
SN - 0163-7258
VL - 95
SP - 119
EP - 126
JO - Pharmacology & Therapeutics
JF - Pharmacology & Therapeutics
IS - 2
ER -