Purinergic receptors and calcium signalling in human pancreatic duct cell lines.

Mette R Hansen, Simon Krabbe, Ivana Novak

22 Citations (Scopus)

Abstract

Purinergic receptors regulate various processes including epithelial transport. There are several studies on P2 receptors in pancreatic ducts of various species, but relatively little is known about these receptors in human tissue. The aim of this study was to identify purinergic receptors in human pancreatic duct cell lines PANC-1 and CFPAC-1. Expression of P2 receptors was examined using RT-PCR and immunocytochemistry. Both cell lines, and also Capan-1 cells, express RNA transcripts for the following receptors: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11-14 and P2X1, P2X2, P2X4, P2X5, P2X6 and P2X7. Using Fura-2 and single-cell imaging we tested effects of various nucleotide analogues on intracellular Ca(2+) signals in PANC-1 and CFPAC-1 cells. The cell lines responded to all nucleotides with the following efficiency: UTP >or= ATP = ATPgammaS > BzATP. ATP, UTP and ATPgammaS elicited oscillatory responses. BzATP, commonly used to stimulate P2X7 receptors, elicited non-oscillatory and transient Ca(2+) responses. Ivermectin, a potentiator of P2X4 receptors, increased Ca(2+) signals evoked by ATP. The single cell Ca(2+) measurements indicated functional expression of P2Y2 and other P2Y receptors, and notably expression of P2X4 and P2X7 receptors. Expression of P2Y2, P2X4 and P2X7 receptors was confirmed by immunocytochemistry. This fingerprint of P2 receptors in human pancreatic duct models forms the basis for studying effect of nucleotides on ion and fluid secretion, as well as on Ca(2+) and tissue homeostasis relevant in physiology and pathophysiology of pancreas.
Original languageEnglish
JournalCellular Physiology and Biochemistry
Volume22
Issue number1-4
Pages (from-to)157-68
Number of pages11
ISSN1015-8987
DOIs
Publication statusPublished - 2008

Fingerprint

Dive into the research topics of 'Purinergic receptors and calcium signalling in human pancreatic duct cell lines.'. Together they form a unique fingerprint.

Cite this