Proton pump-driven cutaneous chloride uptake in anuran amphibia

Lars Jørn Jensen, Niels J. Willumsen, Jan Amstrup, Erik Hviid Larsen

22 Citations (Scopus)

Abstract

Krogh introduced the concept of active ion uptake across surface epithelia of freshwater animals, and proved independent transports of Na(+) and Cl(-) in anuran skin and fish gill. He suggested that the fluxes of Na(+) and Cl(-) involve exchanges with ions of similar charge. In the so-called Krogh model, Cl(-)/HCO(3)(-) and Na(+)/H(+) antiporters are located in the apical membrane of the osmoregulatory epithelium. More recent studies have shown that H(+) excretion in anuran skin is due to a V-ATPase in mitochondria-rich (MR) cells. The pump has been localized by immunostaining and H(+) fluxes estimated by pH-stat titration and mathematical modelling of pH-profiles in the unstirred layer on the external side of the epithelium. H(+) secretion is voltage-dependent, sensitive to carbonic-anhydrase inhibitors, and rheogenic with a charge/ion-flux ratio of unity. Cl(-) uptake from freshwater is saturating, voltage independent, and sensitive to DIDS and carbonic-anhydrase inhibitors. Depending on anuran species and probably on acid/base balance of the animal, apical exit of protons is coupled to an exchange of Cl(-) with base (HCO(3)(-)) either in the apical membrane (gamma-type of MR cell) or in the basolateral membrane (alpha-type MR cell). The gamma-cell model accounts for the rheogenic active uptake of Cl(-) observed in several anuran species. There is indirect evidence also for non-rheogenic active uptake accomplished by a beta-type MR cell with apical base secretion and basolateral proton pumping. Several studies have indicated that the transport modes of MR cells are regulated via ion- and acid/base balance of the animal, but the signalling mechanisms have not been investigated. Estimates of energy consumption by the H(+)-ATPase and the Na(+)/K(+)-ATPase indicate that the gamma-cell accomplishes uptake of NaCl in normal and diluted freshwater. Under common freshwater conditions with serosa-positive or zero V(t), the K(+) conductance of the basolateral membrane would have to maintain the inward driving force for Na(+) uptake across the apical membrane. With the K(+) equilibrium potential across the basolateral membrane estimated to -105 mV, this would apply to external Na(+) concentrations down to 40-120 micromol/l. NaCl uptake from concentrations down to 10 micromol/l, as observed by Krogh, presupposes that the H(+) pump hyperpolarizes the apical membrane, which would then have to be associated with serosa-negative V(t). In diluted freshwater, exchange of cellular HCO(3)(-) with external Cl(-) seems to be possible only if the proton pump has the additional function of keeping the external concentration of HCO(3)(-) low. Quantitative considerations also lead to the conclusion that with the above extreme demand, at physiological intracellular pH of 7.2, the influx of Cl(-) via the apical antiporter and the passive exit of Cl(-) via basolateral channels would be possible within a common range of intracellular Cl(-) concentrations.
Original languageEnglish
JournalBBA General Subjects
Volume1618
Issue number2
Pages (from-to)120-32
Number of pages12
ISSN0304-4165
Publication statusPublished - 2003

Fingerprint

Dive into the research topics of 'Proton pump-driven cutaneous chloride uptake in anuran amphibia'. Together they form a unique fingerprint.

Cite this