Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors

Silvia Bonomo, Cecilie H Hansen, Elyse M Petrunak, Emily E Scott, Bjarne Styrishave, Flemming Steen Jørgensen, Lars Olsen

    27 Citations (Scopus)
    61 Downloads (Pure)

    Abstract

    Cytochrome P450 17A1 (CYP17A1) is an important target in the treatment of prostate cancer because it produces androgens required for tumour growth. The FDA has approved only one CYP17A1 inhibitor, abiraterone, which contains a steroidal scaffold similar to the endogenous CYP17A1 substrates. Abiraterone is structurally similar to the substrates of other cytochrome P450 enzymes involved in steroidogenesis, and interference can pose a liability in terms of side effects. Using non-steroidal scaffolds is expected to enable the design of compounds that interact more selectively with CYP17A1. Therefore, we combined a structure-based virtual screening approach with density functional theory (DFT) calculations to suggest non-steroidal compounds selective for CYP17A1. In vitro assays demonstrated that two such compounds selectively inhibited CYP17A1 17α-hydroxylase and 17,20-lyase activities with IC50 values in the nanomolar range, without affinity for the major drug-metabolizing CYP2D6 and CYP3A4 enzymes and CYP21A2, with the latter result confirmed in human H295R cells.

    Original languageEnglish
    Article number29468
    JournalScientific Reports
    Volume6
    Number of pages11
    ISSN2045-2322
    DOIs
    Publication statusPublished - 12 Jul 2016

    Fingerprint

    Dive into the research topics of 'Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors'. Together they form a unique fingerprint.

    Cite this