TY - JOUR
T1 - Procholecystokinin expression and processing in cardiac myocytes
AU - Goetze, Jens P
AU - Rehfeld, Jens F
N1 - Copyright © 2018 Elsevier Inc. All rights reserved.
PY - 2019/1
Y1 - 2019/1
N2 - The mammalian heart is by now an established endocrine organ whose myocytes in a regulated manner release atrial and ventricular natriuretic peptides (ANP and BNP). But like other hormone-producing cells in classic endocrine organs, the cardiac myocytes also express genes of additional peptide hormones. One such hormone gene is that of the well-known pleiotropic gut-brain peptide system, cholecystokinin (CCK), which is expressed at mRNA and protein levels in both atrial and ventricular cardiac myocytes. The posttranslational processing of proCCK in the myocytes, however, deviates substantially from that of other CCK-producing cells. Hence, the predominant cardiac proCCK product is devoid of the N-terminal 1-24 fragment, and besides O-sulfated at three C-terminal tyrosyl residues (Y76, Y90, and Y92). Moreover, carboxyamidated CCK peptides are present only in very low trace amounts (≤0.1%) in comparison with the truncated and triple-sulfated proCCK fragment. The present review first summarizes present knowledge about the wide-spread expression of the CCK system in mammals, and then discusses the possible function and biomarker role of the specific cardiac proCCK variant. The review concludes that the many unsettled questions about the specific cardiac expression cascade as well as the functional and diagnostic roles of cardiac CCK are worth pursuing.
AB - The mammalian heart is by now an established endocrine organ whose myocytes in a regulated manner release atrial and ventricular natriuretic peptides (ANP and BNP). But like other hormone-producing cells in classic endocrine organs, the cardiac myocytes also express genes of additional peptide hormones. One such hormone gene is that of the well-known pleiotropic gut-brain peptide system, cholecystokinin (CCK), which is expressed at mRNA and protein levels in both atrial and ventricular cardiac myocytes. The posttranslational processing of proCCK in the myocytes, however, deviates substantially from that of other CCK-producing cells. Hence, the predominant cardiac proCCK product is devoid of the N-terminal 1-24 fragment, and besides O-sulfated at three C-terminal tyrosyl residues (Y76, Y90, and Y92). Moreover, carboxyamidated CCK peptides are present only in very low trace amounts (≤0.1%) in comparison with the truncated and triple-sulfated proCCK fragment. The present review first summarizes present knowledge about the wide-spread expression of the CCK system in mammals, and then discusses the possible function and biomarker role of the specific cardiac proCCK variant. The review concludes that the many unsettled questions about the specific cardiac expression cascade as well as the functional and diagnostic roles of cardiac CCK are worth pursuing.
U2 - 10.1016/j.peptides.2018.06.001
DO - 10.1016/j.peptides.2018.06.001
M3 - Review
C2 - 29902521
SN - 0196-9781
VL - 111
SP - 71
EP - 76
JO - Peptides
JF - Peptides
ER -