TY - JOUR
T1 - Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells
AU - Schjoldager, Katrine Ter-Borch Gram
AU - Vakhrushev, Sergey Y
AU - Kong, Yun
AU - Steentoft, Catharina
AU - Nudelman, Aaron S
AU - Pedersen, Nis Borbye
AU - Wandall, Hans H
AU - Mandel, Ulla
AU - Bennett, Eric P
AU - Levery, Steven B
AU - Clausen, Henrik
PY - 2012/6/19
Y1 - 2012/6/19
N2 - Our knowledge of the O-glycoproteome [N-acetylgalactosamine (GalNAc) type] is highly limited. The O-glycoproteome is differentially regulated in cells by dynamic expression of a subset of 20 polypeptide GalNAc-transferases (GalNAc-Ts), and methods to identify important functions of individual GalNAc-Ts are largely unavailable. We recently introduced SimpleCells, i.e., human cell lines made deficient in O-glycan extension by zinc finger nuclease targeting of a key gene in O-glycan elongation (Cosmc), which allows for proteome-wide discovery of O-glycoproteins. Here we have extended the SimpleCell concept to include proteome-wide discovery of unique functions of individual GalNAc-Ts. We used the GalNAc-T2 isoform implicated in dyslipidemia and the human HepG2 liver cell line to demonstrate unique functions of this isoform. We confirm that GalNAc-T2-directed site-specific O-glycosylation inhibits proprotein activation of the lipase inhibitor ANGPTL3 in HepG2 cells and further identify eight O-glycoproteins exclusively glycosylated by T2 of which one, ApoC-III, is implicated in dyslipidemia. Our study supports an essential role for GalNAc-T2 in lipid metabolism, provides serum biomarkers for GalNAc-T2 enzyme function, and validates the use of GALNT gene targeting with SimpleCells for broad discovery of disease-causing deficiencies in O-glycosylation. The presented glycoengineering strategy opens the way for proteome-wide discovery of functions of GalNAc-T isoforms and their role in congenital diseases and disorders.
AB - Our knowledge of the O-glycoproteome [N-acetylgalactosamine (GalNAc) type] is highly limited. The O-glycoproteome is differentially regulated in cells by dynamic expression of a subset of 20 polypeptide GalNAc-transferases (GalNAc-Ts), and methods to identify important functions of individual GalNAc-Ts are largely unavailable. We recently introduced SimpleCells, i.e., human cell lines made deficient in O-glycan extension by zinc finger nuclease targeting of a key gene in O-glycan elongation (Cosmc), which allows for proteome-wide discovery of O-glycoproteins. Here we have extended the SimpleCell concept to include proteome-wide discovery of unique functions of individual GalNAc-Ts. We used the GalNAc-T2 isoform implicated in dyslipidemia and the human HepG2 liver cell line to demonstrate unique functions of this isoform. We confirm that GalNAc-T2-directed site-specific O-glycosylation inhibits proprotein activation of the lipase inhibitor ANGPTL3 in HepG2 cells and further identify eight O-glycoproteins exclusively glycosylated by T2 of which one, ApoC-III, is implicated in dyslipidemia. Our study supports an essential role for GalNAc-T2 in lipid metabolism, provides serum biomarkers for GalNAc-T2 enzyme function, and validates the use of GALNT gene targeting with SimpleCells for broad discovery of disease-causing deficiencies in O-glycosylation. The presented glycoengineering strategy opens the way for proteome-wide discovery of functions of GalNAc-T isoforms and their role in congenital diseases and disorders.
U2 - 10.1073/pnas.1203563109
DO - 10.1073/pnas.1203563109
M3 - Journal article
C2 - 22566642
SN - 0027-8424
VL - 109
SP - 9893
EP - 9898
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 25
ER -