Primary cilia and aberrant cell signaling in epithelial ovarian cancer

Dorte Louise Egeberg, Mette Lethan, Robert Manguso, Linda Schneider, Aashir Awan, Tue Sparholt Jørgensen, Anne G. Byskov, Lotte Bang Pedersen, Søren Tvorup Christensen

48 Citations (Scopus)
1152 Downloads (Pure)

Abstract

Background: Ovarian cancer is the fourth leading cause of cancer-related deaths among women in Denmark, largely due to the advanced stage at diagnosis in most patients. Approximately 90% of ovarian cancers originate from the single-layered ovarian surface epithelium (OSE). Defects in the primary cilium, a solitary sensory organelle in most cells types including OSE, were recently implicated in tumorigenesis, mainly due to deregulation of ciliary signaling pathways such as Hedgehog (Hh) signaling. However, a possible link between primary cilia and epithelial ovarian cancer has not previously been investigated.Methods: The presence of primary cilia was analyzed in sections of fixed human ovarian tissue as well as in cultures of normal human ovarian surface epithelium (OSE) cells and two human OSE-derived cancer cell lines. We also used immunofluorescence microscopy, western blotting, RT-PCR and siRNA to investigate ciliary signaling pathways in these cells.Results: We show that ovarian cancer cells display significantly reduced numbers of primary cilia. The reduction in ciliation frequency in these cells was not due to a failure to enter growth arrest, and correlated with persistent centrosomal localization of aurora A kinase (AURA). Further, we demonstrate that ovarian cancer cells have deregulated Hh signaling and platelet-derived growth factor receptor alpha (PDGFRα) expression and that promotion of ciliary formation/stability by AURA siRNA depletion decreases Hh signaling in ovarian cancer cells. Lastly, we show that the tumor suppressor protein and negative regulator of AURA, checkpoint with forkhead-associated and ring finger domains (CHFR), localizes to the centrosome/primary cilium axis.Conclusions: Our results suggest that primary cilia play a role in maintaining OSE homeostasis and that the low frequency of primary cilia in cancer OSE cells may result in part from over-expression of AURA, leading to aberrant Hh signaling and ovarian tumorigenesis.

Original languageEnglish
JournalCilia
Volume1
Issue number15
Number of pages17
DOIs
Publication statusPublished - 10 Aug 2012

Fingerprint

Dive into the research topics of 'Primary cilia and aberrant cell signaling in epithelial ovarian cancer'. Together they form a unique fingerprint.

Cite this