Primal Eukaryogenesis: On the Communal Nature of Precellular States, Ancestral to Modern Life

12 Citations (Scopus)
1060 Downloads (Pure)

Abstract

This problem-oriented, exploratory and hypothesis-driven discourse toward the unknown combines several basic tenets: (i) a photo-active metal sulfide scenario of primal biogenesis in the porespace of shallow sedimentary flats, in contrast to hot deep-sea hydrothermal vent conditions; (ii) an inherently complex communal system at the common root of present life forms; (iii) a high degree of internal compartmentalization at this communal root, progressively resembling coenocytic (syncytial) super-cells; (iv) a direct connection from such communal super-cells to proto-eukaryotic macro-cell organization; and (v) multiple rounds of micro-cellular escape with streamlined reductive evolution-leading to the major prokaryotic cell lines, as well as to megaviruses and other viral lineages. Hopefully, such nontraditional concepts and approaches will contribute to coherent and plausible views about the origins and early life on Earth. In particular, the coevolutionary emergence from a communal system at the common root can most naturally explain the vast discrepancy in subcellular organization between modern eukaryotes on the one hand and both archaea and bacteria on the other.

Original languageEnglish
JournalLife
Volume2
Issue number1
Pages (from-to)170-212
Number of pages43
ISSN2075-1729
DOIs
Publication statusPublished - 23 Jan 2012

Fingerprint

Dive into the research topics of 'Primal Eukaryogenesis: On the Communal Nature of Precellular States, Ancestral to Modern Life'. Together they form a unique fingerprint.

Cite this