TY - JOUR
T1 - Previous glucocorticoid treatment in childhood and adolescence is associated with long-term differences in subcortical grey matter volume and microstructure
AU - Holm, Sara Krøis
AU - Madsen, Kathrine Skak
AU - Vestergaard, Martin
AU - Born, Alfred Peter
AU - Paulson, Olaf B
AU - Siebner, Hartwig Roman
AU - Uldall, Peter
AU - Baaré, William F C
N1 - Copyright © 2019. Published by Elsevier Inc.
PY - 2019
Y1 - 2019
N2 - BACKGROUND: Glucocorticoids are widely used in the treatment of several pediatric diseases with undisputed disease-related benefits. Perinatal exposure to high levels of glucocorticoids can have long-term adverse cerebral effects. In adults, glucocorticoid treatment has been associated with smaller volumes of subcortical grey matter structures. Recently, we observed smaller total brain volumes in children and adolescents treated with glucocorticoid during childhood compared to healthy controls. The possible long-term effects of glucocorticoid treatment during childhood on subcortical brain volume and microstructure remain unknown.METHOD: We examined 30 children and adolescents, who had previously been treated with glucocorticoids for nephrotic syndrome or rheumatic disease, and 30 healthy volunteers. Patients and healthy control groups were matched by age, gender, and level of parent education. Participants underwent 3 T magnetic resonance (MR) brain imaging. T1-weighted and diffusion-weighted images were acquired. Volume and mean diffusivity (MD) measures were extracted for hippocampus, amygdala, nucleus accumbens, caudate nucleus and putamen. Multiple linear regression analyses were used to assess differences between patients and controls, and to evaluate possible dose-response relationships. A priori, we expected patients to display lower hippocampal and amygdala volumes.RESULTS: While children previously treated with glucocorticoids displayed smaller right hippocampal volumes than controls, this difference did not survive correction for multiple comparisons. Furthermore, patients as compared to controls showed lower right hippocampal MD, which remained when correcting for global changes in MD. The longer the time between the glucocorticoid treatment termination and MR-scan, the more right hippocampal MD values resembled that of healthy controls. Patient and controls did not differ in amygdala volume or MD. Analyses of the nucleus accumbens, caudate nucleus and putamen only revealed smaller putamen volumes in patients compared to controls, which remained significant when controlling for total brain volume.CONCLUSION: The results suggest that extra-cerebral diseases during childhood treated with glucocorticoids may be associated with reduced subcortical grey matter volumes and lower right hippocampal mean diffusivity later in life. Our findings warrant replication and elaboration in larger, preferably prospective and longitudinal studies. Such studies may also allow disentangling disease-specific effects from possible glucocorticoid treatment effects.
AB - BACKGROUND: Glucocorticoids are widely used in the treatment of several pediatric diseases with undisputed disease-related benefits. Perinatal exposure to high levels of glucocorticoids can have long-term adverse cerebral effects. In adults, glucocorticoid treatment has been associated with smaller volumes of subcortical grey matter structures. Recently, we observed smaller total brain volumes in children and adolescents treated with glucocorticoid during childhood compared to healthy controls. The possible long-term effects of glucocorticoid treatment during childhood on subcortical brain volume and microstructure remain unknown.METHOD: We examined 30 children and adolescents, who had previously been treated with glucocorticoids for nephrotic syndrome or rheumatic disease, and 30 healthy volunteers. Patients and healthy control groups were matched by age, gender, and level of parent education. Participants underwent 3 T magnetic resonance (MR) brain imaging. T1-weighted and diffusion-weighted images were acquired. Volume and mean diffusivity (MD) measures were extracted for hippocampus, amygdala, nucleus accumbens, caudate nucleus and putamen. Multiple linear regression analyses were used to assess differences between patients and controls, and to evaluate possible dose-response relationships. A priori, we expected patients to display lower hippocampal and amygdala volumes.RESULTS: While children previously treated with glucocorticoids displayed smaller right hippocampal volumes than controls, this difference did not survive correction for multiple comparisons. Furthermore, patients as compared to controls showed lower right hippocampal MD, which remained when correcting for global changes in MD. The longer the time between the glucocorticoid treatment termination and MR-scan, the more right hippocampal MD values resembled that of healthy controls. Patient and controls did not differ in amygdala volume or MD. Analyses of the nucleus accumbens, caudate nucleus and putamen only revealed smaller putamen volumes in patients compared to controls, which remained significant when controlling for total brain volume.CONCLUSION: The results suggest that extra-cerebral diseases during childhood treated with glucocorticoids may be associated with reduced subcortical grey matter volumes and lower right hippocampal mean diffusivity later in life. Our findings warrant replication and elaboration in larger, preferably prospective and longitudinal studies. Such studies may also allow disentangling disease-specific effects from possible glucocorticoid treatment effects.
U2 - 10.1016/j.nicl.2019.101825
DO - 10.1016/j.nicl.2019.101825
M3 - Journal article
C2 - 31004915
SN - 2213-1582
VL - 23
JO - NeuroImage: Clinical
JF - NeuroImage: Clinical
M1 - 101825
ER -