TY - JOUR
T1 - Prenatal Intra-Amniotic Endotoxin Induces Fetal Gut and Lung Immune Responses and Postnatal Systemic Inflammation in Preterm Pigs
AU - Nguyen, Duc Ninh
AU - Thymann, Thomas
AU - Goericke-Pesch, Sandra K.
AU - Ren, Shuqiang
AU - Wei, Wei
AU - Skovgaard, Kerstin
AU - Damborg, Peter
AU - Brunse, Anders
AU - van Gorp, Charlotte
AU - Kramer, Boris W.
AU - Wolfs, Tim G.
AU - Sangild, Per T.
PY - 2018
Y1 - 2018
N2 - Prenatal inflammation is a major risk for preterm birth and neonatal morbidity, but its effects on postnatal immunity and organ functions remain unclear. Using preterm pigs as a model for preterm infants, we investigated whether prenatal intra-amniotic (IA) inflammation modulates postnatal systemic immune status and organ functions. Preterm pigs exposed to IA lipopolysaccharide (LPS) for 3 days were compared with controls at birth and postnatal day 5 after formula feeding. IA LPS induced mild chorioamnionitis but extensive intra-amniotic inflammation. There were minor systemic effects at birth (increased blood neutrophil counts), but a few days later, prenatal LPS induced delayed neonatal arousal, systemic inflammation (increased blood leukocytes, plasma cytokines, and splenic bacterial counts), altered serum biochemistry (lower albumin and cholesterol and higher iron and glucose values), and increased urinary protein and sodium excretion. In the gut and lungs, IA LPS–induced inflammatory responses were observed mainly at birth (increased LPS, CXCL8, and IL-1β levels and myeloperoxidase-positive cell density, multiple increases in innate immune gene expressions, and reduced villus heights), but not on postnatal day 5 (except elevated lung CXCL8 and diarrhea symptoms). Finally, IA LPS did not affect postnatal gut brush-border enzymes, hexose absorption, permeability, or sensitivity to necrotizing enterocolitis on day 5. Short-term IA LPS exposure predisposes preterm pigs to postnatal systemic inflammation after acute fetal gut and lung inflammatory responses.
AB - Prenatal inflammation is a major risk for preterm birth and neonatal morbidity, but its effects on postnatal immunity and organ functions remain unclear. Using preterm pigs as a model for preterm infants, we investigated whether prenatal intra-amniotic (IA) inflammation modulates postnatal systemic immune status and organ functions. Preterm pigs exposed to IA lipopolysaccharide (LPS) for 3 days were compared with controls at birth and postnatal day 5 after formula feeding. IA LPS induced mild chorioamnionitis but extensive intra-amniotic inflammation. There were minor systemic effects at birth (increased blood neutrophil counts), but a few days later, prenatal LPS induced delayed neonatal arousal, systemic inflammation (increased blood leukocytes, plasma cytokines, and splenic bacterial counts), altered serum biochemistry (lower albumin and cholesterol and higher iron and glucose values), and increased urinary protein and sodium excretion. In the gut and lungs, IA LPS–induced inflammatory responses were observed mainly at birth (increased LPS, CXCL8, and IL-1β levels and myeloperoxidase-positive cell density, multiple increases in innate immune gene expressions, and reduced villus heights), but not on postnatal day 5 (except elevated lung CXCL8 and diarrhea symptoms). Finally, IA LPS did not affect postnatal gut brush-border enzymes, hexose absorption, permeability, or sensitivity to necrotizing enterocolitis on day 5. Short-term IA LPS exposure predisposes preterm pigs to postnatal systemic inflammation after acute fetal gut and lung inflammatory responses.
U2 - 10.1016/j.ajpath.2018.07.020
DO - 10.1016/j.ajpath.2018.07.020
M3 - Journal article
C2 - 30314768
AN - SCOPUS:85055169042
SN - 0002-9440
VL - 188
SP - 2629
EP - 2643
JO - American Journal of Pathology
JF - American Journal of Pathology
IS - 11
ER -