Preferential interactions and the effect of protein PEGylation

Louise Stenstrup Holm, Peter Waaben Thulstrup, Marina Robertovna Kasimova, Marco van de Weert

10 Citations (Scopus)
310 Downloads (Pure)

Abstract

BACKGROUND: PEGylation is a strategy used by the pharmaceutical industry to prolong systemic circulation of protein drugs, whereas formulation excipients are used for stabilization of proteins during storage. Here we investigate the role of PEGylation in protein stabilization by formulation excipients that preferentially interact with the protein.

METHODOLOGY/PRINCIPAL FINDINGS: The model protein hen egg white lysozyme was doubly PEGylated on two lysines with 5 kDa linear PEGs (mPEG-succinimidyl valerate, MW 5000) and studied in the absence and presence of preferentially excluded sucrose and preferentially bound guanine hydrochloride. Structural characterization by far- and near-UV circular dichroism spectroscopy was supplemented by investigation of protein thermal stability with the use of differential scanning calorimetry, far and near-UV circular dichroism and fluorescence spectroscopy. It was found that PEGylated lysozyme was stabilized by the preferentially excluded excipient and destabilized by the preferentially bound excipient in a similar manner as lysozyme. However, compared to lysozyme in all cases the melting transition was lower by up to a few degrees and the calorimetric melting enthalpy was decreased to half the value for PEGylated lysozyme. The ratio between calorimetric and van't Hoff enthalpy suggests that our PEGylated lysozyme is a dimer.

CONCLUSION/SIGNIFICANCE: The PEGylated model protein displayed similar stability responses to the addition of preferentially active excipients. This suggests that formulation principles using preferentially interacting excipients are similar for PEGylated and non-PEGylated proteins.

Original languageEnglish
Article numbere0133584
JournalPLOS ONE
Volume10
Issue number7
Number of pages18
ISSN1932-6203
DOIs
Publication statusPublished - 31 Jul 2015

Fingerprint

Dive into the research topics of 'Preferential interactions and the effect of protein PEGylation'. Together they form a unique fingerprint.

Cite this