TY - JOUR
T1 - Planck intermediate results. XXXVII. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect
AU - Ade, P.A.R
AU - Aghanim, N.
AU - Arnaud, M.
AU - Ashdown, M.
AU - Aubourg, E.
AU - Aumont, J.
AU - Baccigalupi, C.
AU - Banday, A.J.
AU - Barreiro, R.B.
AU - Bartolo, N.
AU - Battaner, E.
AU - Christensen, Per Rex
AU - Frejsel, Anne Mette
AU - Nasselski, Pavel
AU - Novikov, Igor Dmitrievich
AU - Nørgaard-Nielsen, Hans Ulrik
PY - 2016/2/1
Y1 - 2016/2/1
N2 - By looking at the kinetic Sunyaev-Zeldovich effect (kSZ) in Planck nominal mission data, we present a significant detection of baryons participating in large-scale bulk flows around central galaxies (CGs) at redshift z ≈ 0.1. We estimate the pairwise momentum of the kSZ temperature fluctuations at the positions of the Central Galaxy Catalogue (CGC) samples extracted from Sloan Digital Sky Survey (SDSS-DR7) data. For the foreground-cleaned SEVEM, SMICA, NILC, and COMMANDER maps, we find 1.8-2.5σ detections of the kSZ signal, which are consistent with the kSZ evidence found in individual Planck raw frequency maps, although lower than found in the WMAP-9yr W-band (3.3σ). We further reconstruct the peculiar velocity field from the CG density field, and compute for the first time the cross-correlation function between kSZ temperature fluctuations and estimates of CG radial peculiar velocities. This correlation function yields a 3.0-3.7σ detection of the peculiar motion of extended gas on Mpc scales in flows correlated up to distances of 80-100 h-1 Mpc. Both the pairwise momentum estimates and the kSZ temperature-velocity field correlation find evidence for kSZ signatures out to apertures of 8 arcmin and beyond, corresponding to a physical radius of >1 Mpc, more than twice the mean virial radius of halos. This is consistent with the predictions from hydrodynamical simulations that most of the baryons are outside the virialized halos. We fit a simple model, in which the temperature-velocity cross-correlation is proportional to the signal seen in a semi-analytic model built upon N-body simulations, and interpret the proportionality constant as an effective optical depth to Thomson scattering. We find τT = (1.4 ± 0.5) × 10-4; the simplest interpretation of this measurement is that much of the gas is in a diffuse phase, which contributes little signal to X-ray or thermal Sunyaev-Zeldovich observations.
AB - By looking at the kinetic Sunyaev-Zeldovich effect (kSZ) in Planck nominal mission data, we present a significant detection of baryons participating in large-scale bulk flows around central galaxies (CGs) at redshift z ≈ 0.1. We estimate the pairwise momentum of the kSZ temperature fluctuations at the positions of the Central Galaxy Catalogue (CGC) samples extracted from Sloan Digital Sky Survey (SDSS-DR7) data. For the foreground-cleaned SEVEM, SMICA, NILC, and COMMANDER maps, we find 1.8-2.5σ detections of the kSZ signal, which are consistent with the kSZ evidence found in individual Planck raw frequency maps, although lower than found in the WMAP-9yr W-band (3.3σ). We further reconstruct the peculiar velocity field from the CG density field, and compute for the first time the cross-correlation function between kSZ temperature fluctuations and estimates of CG radial peculiar velocities. This correlation function yields a 3.0-3.7σ detection of the peculiar motion of extended gas on Mpc scales in flows correlated up to distances of 80-100 h-1 Mpc. Both the pairwise momentum estimates and the kSZ temperature-velocity field correlation find evidence for kSZ signatures out to apertures of 8 arcmin and beyond, corresponding to a physical radius of >1 Mpc, more than twice the mean virial radius of halos. This is consistent with the predictions from hydrodynamical simulations that most of the baryons are outside the virialized halos. We fit a simple model, in which the temperature-velocity cross-correlation is proportional to the signal seen in a semi-analytic model built upon N-body simulations, and interpret the proportionality constant as an effective optical depth to Thomson scattering. We find τT = (1.4 ± 0.5) × 10-4; the simplest interpretation of this measurement is that much of the gas is in a diffuse phase, which contributes little signal to X-ray or thermal Sunyaev-Zeldovich observations.
U2 - 10.1051/0004-6361/201526328
DO - 10.1051/0004-6361/201526328
M3 - Journal article
SN - 0004-6361
VL - 586
JO - Astronomy and Astrophysics Supplement Series
JF - Astronomy and Astrophysics Supplement Series
M1 - A140
ER -