TY - JOUR
T1 - PI3KC2{alpha}, a class II PI3K, is required for dynamin-independent internalization pathways
AU - Krag, Claudia
AU - Malmberg, Emily Kim
AU - Salcini, Anna Elisabetta
PY - 2010/12/15
Y1 - 2010/12/15
N2 - Increasing evidence indicates that cellular uptake of several molecules can occur independently of functional dynamin, but the molecular players that regulate dynamin-independent endocytosis and the subsequent trafficking steps are still largely unknown. A survival-based short-hairpin (sh) RNA screen using a cell line expressing a diphtheria toxin receptor (DTR, officially known as HBEGF) anchored to GPI (DTR-GPI), which internalizes diphtheria toxin (DT, officially known as DTX) in a dynamin-independent manner, identified PI3KC2α, a class II phosphoinositide 3-kinase (PI3K), as a specific regulator of dynamin-independent DT internalization. We found that the internalization of several proteins that enter the cell through dynamin-independent pathways led to a relocalization of PI3KC2α to cargo-positive vesicles. Furthermore, downregulation of PI3KC2α impaired internalization of CD59 as well as fluid-phase endocytosis. Our data suggest a general role for PI3KC2α in regulating physiologically relevant dynamin-independent internalization pathways by recruiting early endosome antigen 1 (EEA1) to vesicular compartments, a step required for the intracellular trafficking of vesicles generated by dynamin-independent endocytic pathways.
AB - Increasing evidence indicates that cellular uptake of several molecules can occur independently of functional dynamin, but the molecular players that regulate dynamin-independent endocytosis and the subsequent trafficking steps are still largely unknown. A survival-based short-hairpin (sh) RNA screen using a cell line expressing a diphtheria toxin receptor (DTR, officially known as HBEGF) anchored to GPI (DTR-GPI), which internalizes diphtheria toxin (DT, officially known as DTX) in a dynamin-independent manner, identified PI3KC2α, a class II phosphoinositide 3-kinase (PI3K), as a specific regulator of dynamin-independent DT internalization. We found that the internalization of several proteins that enter the cell through dynamin-independent pathways led to a relocalization of PI3KC2α to cargo-positive vesicles. Furthermore, downregulation of PI3KC2α impaired internalization of CD59 as well as fluid-phase endocytosis. Our data suggest a general role for PI3KC2α in regulating physiologically relevant dynamin-independent internalization pathways by recruiting early endosome antigen 1 (EEA1) to vesicular compartments, a step required for the intracellular trafficking of vesicles generated by dynamin-independent endocytic pathways.
U2 - 10.1242/jcs.071712
DO - 10.1242/jcs.071712
M3 - Journal article
C2 - 21081650
SN - 0021-9533
JO - Journal of Cell Science
JF - Journal of Cell Science
ER -