Abstract
The E2F transcription factor family participates in growth control presumably through transcriptional activation of genes that promote entry into S phase. E2F activity is believed to be controlled across the cell cycle by association with various cellular proteins, including the product of the retinoblastoma gene (pRB). We find that E2F-1 proteins are heterogeneously phosphorylated in insect cells, as a result of which they migrate as a doublet on SDS-polyacrylamide gels. This electrophoretic shift is shown to be dependent upon specific phosphorylation of E2F-1 on serine-375 (S375), near the pRB-binding site. Phosphorylation on S375 also occurs in human cells. E2F-1 was most efficiently phosphorylated on this residue by cyclin A/cdk2 kinase, and to a lesser extent by cyclin A/cdk2, irrespective of the presence of the pRB-related p107 protein. Phosphorylation of E2F-1 on S375 greatly enhanced its affinity of pRB in vitro. These results suggest a novel way of regulating E2F-1 activity, namely by cell-cycle-dependent phosphorylation of this transcription factor.
Original language | English |
---|---|
Journal | Oncogene |
Volume | 10 |
Issue number | 1 |
Pages (from-to) | 39-48 |
Number of pages | 9 |
ISSN | 0950-9232 |
Publication status | Published - 1995 |