TY - JOUR
T1 - PGC-1α regulates mitochondrial properties beyond biogenesis with aging and exercise training
AU - Halling, Jens Frey
AU - Jessen, Henrik
AU - Nøhr-Meldgaard, Jacob
AU - Buch, Bjørg Thiellesen
AU - Christensen, Natascha Masselkhi
AU - Gudiksen, Anders
AU - Ringholm, Stine
AU - Neufer, P. Darrell
AU - Prats, Clara
AU - Pilegaard, Henriette
PY - 2019/9
Y1 - 2019/9
N2 - Impaired mitochondrial function has been implicated in the pathogenesis of age-associated metabolic diseases through regulation of cellular redox balance. Exercise training is known to promote mitochondrial biogenesis in part through induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Recently, mitochondrial ADP sensitivity has been linked to reactive oxygen species (ROS) emission with potential impact on age-associated physiological outcomes, but the underlying molecular mechanisms remain unclear. Therefore, the present study investigated the effects of aging and exercise training on mitochondrial properties beyond biogenesis, including respiratory capacity, ADP sensitivity, ROS emission, and mitochondrial network structure, in myofibers from inducible muscle-specific PGC-1α-knockout mice and control mice. Aged mice displayed lower running endurance and mitochondrial respiratory capacity than young mice. This was associated with intermyofibrillar mitochondrial network fragmentation, diminished submaximal ADP-stimulated respiration, increased mitochondrial ROS emission, and oxidative stress. Exercise training reversed the decline in maximal respiratory capacity independent of PGC-1α, whereas exercise training rescued the age-related mitochondrial network fragmentation and the impaired submaximal ADP-stimulated respiration in a PGC-1α-dependent manner. Furthermore, lack of PGC-1α was associated with altered phosphorylation and carbonylation of the inner mitochondrial membrane ADP/ATP exchanger adenine nucleotide translocase 1. In conclusion, the present study provides evidence that PGC-1α regulates submaximal ADP-stimulated respiration, ROS emission, and mitochondrial network structure in mouse skeletal muscle during aging and exercise training.
AB - Impaired mitochondrial function has been implicated in the pathogenesis of age-associated metabolic diseases through regulation of cellular redox balance. Exercise training is known to promote mitochondrial biogenesis in part through induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Recently, mitochondrial ADP sensitivity has been linked to reactive oxygen species (ROS) emission with potential impact on age-associated physiological outcomes, but the underlying molecular mechanisms remain unclear. Therefore, the present study investigated the effects of aging and exercise training on mitochondrial properties beyond biogenesis, including respiratory capacity, ADP sensitivity, ROS emission, and mitochondrial network structure, in myofibers from inducible muscle-specific PGC-1α-knockout mice and control mice. Aged mice displayed lower running endurance and mitochondrial respiratory capacity than young mice. This was associated with intermyofibrillar mitochondrial network fragmentation, diminished submaximal ADP-stimulated respiration, increased mitochondrial ROS emission, and oxidative stress. Exercise training reversed the decline in maximal respiratory capacity independent of PGC-1α, whereas exercise training rescued the age-related mitochondrial network fragmentation and the impaired submaximal ADP-stimulated respiration in a PGC-1α-dependent manner. Furthermore, lack of PGC-1α was associated with altered phosphorylation and carbonylation of the inner mitochondrial membrane ADP/ATP exchanger adenine nucleotide translocase 1. In conclusion, the present study provides evidence that PGC-1α regulates submaximal ADP-stimulated respiration, ROS emission, and mitochondrial network structure in mouse skeletal muscle during aging and exercise training.
KW - ADP sensitivity
KW - aging
KW - exercise
KW - mitochondria
KW - PGC-1α
KW - ROS
U2 - 10.1152/ajpendo.00059.2019
DO - 10.1152/ajpendo.00059.2019
M3 - Journal article
C2 - 31265325
SN - 0193-1849
VL - 317
SP - E513-E525
JO - American journal of physiology. Endocrinology and metabolism
JF - American journal of physiology. Endocrinology and metabolism
IS - 3
ER -