TY - JOUR
T1 - Parallel expression of synaptophysin and evoked neurotransmitter release during development of cultured neurons
AU - Ehrhart-Bornstein, M
AU - Treiman, M
AU - Hansen, Gert Helge
AU - Schousboe, A
AU - Thorn, N A
AU - Frandsen, A
N1 - Keywords: Animals; Aspartic Acid; Cells, Cultured; Cerebellum; Cerebral Cortex; Female; Immunoassay; Mice; Neurons; Neurotransmitter Agents; Pregnancy; Synaptophysin; gamma-Aminobutyric Acid
PY - 1991
Y1 - 1991
N2 - Primary cultures of GABAergic cerebral cortex neurons and glutamatergic cerebellar granule cells were used to study the expression of synaptophysin, a synaptic vesicle marker protein, along with the ability of each cell type to release neurotransmitter upon stimulation. The synaptophysin expression and neurotransmitter release were measured in each of the culture types as a function of development for up to 8 days in vitro, using the same batch of cells for both sets of measurements to obtain optimal comparisons. The content and the distribution of synaptophysin in the developing cells were assessed by quantitative immunoblotting and light microscope immunocytochemistry, respectively. In both cell types, a close parallelism was found between the temporal pattern of development in synaptophysin expression and neurotransmitter release. This temporal pattern differed between the two types of neurons. The cerebral cortex neurons showed a biphasic time course of increase in synaptophysin content, paralleled by a biphasic pattern of development in their ability to release [3H]GABA in response to depolarization by glutamate or elevated K+ concentrations. In contrast, a monophasic, approximately linear increase in the synaptophysin content and stimulated [3H]D-aspartate release was found in the cerebellar granule cells. These results, particularly regarding the GABAergic neurons, offer correlative evidence in support of the notion that a vesicular pool of these amino acid neurotransmitters may be intimately involved in their release, subsequent to depolarization stimuli.
AB - Primary cultures of GABAergic cerebral cortex neurons and glutamatergic cerebellar granule cells were used to study the expression of synaptophysin, a synaptic vesicle marker protein, along with the ability of each cell type to release neurotransmitter upon stimulation. The synaptophysin expression and neurotransmitter release were measured in each of the culture types as a function of development for up to 8 days in vitro, using the same batch of cells for both sets of measurements to obtain optimal comparisons. The content and the distribution of synaptophysin in the developing cells were assessed by quantitative immunoblotting and light microscope immunocytochemistry, respectively. In both cell types, a close parallelism was found between the temporal pattern of development in synaptophysin expression and neurotransmitter release. This temporal pattern differed between the two types of neurons. The cerebral cortex neurons showed a biphasic time course of increase in synaptophysin content, paralleled by a biphasic pattern of development in their ability to release [3H]GABA in response to depolarization by glutamate or elevated K+ concentrations. In contrast, a monophasic, approximately linear increase in the synaptophysin content and stimulated [3H]D-aspartate release was found in the cerebellar granule cells. These results, particularly regarding the GABAergic neurons, offer correlative evidence in support of the notion that a vesicular pool of these amino acid neurotransmitters may be intimately involved in their release, subsequent to depolarization stimuli.
M3 - Journal article
C2 - 1685844
SN - 0736-5748
VL - 9
SP - 463
EP - 471
JO - International Journal of Developmental Neuroscience
JF - International Journal of Developmental Neuroscience
IS - 5
ER -