TY - JOUR
T1 - Oscillatory Shear Rheology in Examining the Drug-Polymer Interactions Relevant in Hot Melt Extrusion
AU - Aho, Johanna
AU - Edinger, Magnus
AU - Botker, Johan
AU - Baldursdottir, Stefania
AU - Rantanen, Jukka
N1 - Copyright © 2016. Published by Elsevier Inc.
PY - 2016/1
Y1 - 2016/1
N2 - The flow properties of drug-polymer mixtures have a significant influence on their processability when using techniques such as hot melt extrusion (HME). Suitable extrusion temperature and screw speed to be used in laboratory scale HME were evaluated for mixtures containing 30% of paracetamol (PRC), ibuprofen (IBU), or indomethacin (IND), and 70% of polyethylene oxide, by using small amplitude oscillatory shear rheology. The initial evaluation of the drug:polyethylene oxide solubility was estimated by differential scanning calorimetry of the physical mixtures containing a wide range of weight fractions of the drug substances. Consecutively, the mixtures were extruded, and the maximum plasticizing weight fraction of each drug was determined by means of rheological measurements. IBU was found to have an efficient plasticizing functionality, decreasing the viscosity of the mixtures even above its apparent saturation solubility, whereas IND and PRC initially lowered the viscosity of the mixture slightly but increased it significantly with increasing drug load. The main reason for the enhanced plasticization effect seems to be the lower melting temperature of IBU, which is closer to the used HME temperature, compared to PRC and IND. This study highlights the importance of rheological investigation in understanding the drug-polymer interactions in melt processing.
AB - The flow properties of drug-polymer mixtures have a significant influence on their processability when using techniques such as hot melt extrusion (HME). Suitable extrusion temperature and screw speed to be used in laboratory scale HME were evaluated for mixtures containing 30% of paracetamol (PRC), ibuprofen (IBU), or indomethacin (IND), and 70% of polyethylene oxide, by using small amplitude oscillatory shear rheology. The initial evaluation of the drug:polyethylene oxide solubility was estimated by differential scanning calorimetry of the physical mixtures containing a wide range of weight fractions of the drug substances. Consecutively, the mixtures were extruded, and the maximum plasticizing weight fraction of each drug was determined by means of rheological measurements. IBU was found to have an efficient plasticizing functionality, decreasing the viscosity of the mixtures even above its apparent saturation solubility, whereas IND and PRC initially lowered the viscosity of the mixture slightly but increased it significantly with increasing drug load. The main reason for the enhanced plasticization effect seems to be the lower melting temperature of IBU, which is closer to the used HME temperature, compared to PRC and IND. This study highlights the importance of rheological investigation in understanding the drug-polymer interactions in melt processing.
U2 - 10.1016/j.xphs.2015.11.029
DO - 10.1016/j.xphs.2015.11.029
M3 - Journal article
C2 - 26852851
SN - 0022-3549
VL - 105
SP - 160
EP - 167
JO - Journal of Pharmaceutical Sciences
JF - Journal of Pharmaceutical Sciences
IS - 1
ER -