TY - JOUR
T1 - Optimized Basis Sets for the calculation of Indirect Nuclear Spin-Spin Coupling Constants Involving the Atoms B, Al, Si, P and Cl
AU - Provasi, Patricio F.
AU - Sauer, Stephan P. A.
N1 - Paper id:: 054308
PY - 2010/8/7
Y1 - 2010/8/7
N2 - The aug-cc-pVTZ-J series of basis sets for indirect nuclear spin-spin coupling constants has been extended to the atoms B, Al, Si, P, and Cl. The basis sets were obtained according to the scheme previously described by Provasi [J. Chem. Phys. 115, 1324 (2001)]. First, the completely uncontracted correlation consistent aug-cc-pVTZ basis sets were extended with four tight s and three tight d functions. Second, the s and p basis functions were contracted with the molecular orbital coefficients of self-consistent-field calculations performed with the uncontracted basis sets on the simplest hydrides of each atom. As a first illustration, we have calculated the one-bond indirect spin-spin coupling constants in BH4-, BF, AlH, AlF, SiH4, SiF4, PH3, PF3, H2 S, SF6, HCl, and ClF at the level of density functional theory using the Becke three parameter Lee-Yang-Parr and the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes.
AB - The aug-cc-pVTZ-J series of basis sets for indirect nuclear spin-spin coupling constants has been extended to the atoms B, Al, Si, P, and Cl. The basis sets were obtained according to the scheme previously described by Provasi [J. Chem. Phys. 115, 1324 (2001)]. First, the completely uncontracted correlation consistent aug-cc-pVTZ basis sets were extended with four tight s and three tight d functions. Second, the s and p basis functions were contracted with the molecular orbital coefficients of self-consistent-field calculations performed with the uncontracted basis sets on the simplest hydrides of each atom. As a first illustration, we have calculated the one-bond indirect spin-spin coupling constants in BH4-, BF, AlH, AlF, SiH4, SiF4, PH3, PF3, H2 S, SF6, HCl, and ClF at the level of density functional theory using the Becke three parameter Lee-Yang-Parr and the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes.
U2 - 10.1063/1.3465553
DO - 10.1063/1.3465553
M3 - Journal article
C2 - 20707533
SN - 0021-9606
VL - 133
JO - The Journal of Chemical Physics
JF - The Journal of Chemical Physics
ER -