Operator Schmidt ranks of bipartite unitary matrices

Alexander Müller-Hermes*, Ion Nechita

*Corresponding author for this work
1 Citation (Scopus)

Abstract

The operator Schmidt rank of an operator acting on the tensor product Cn⊗Cm is the number of terms in a decomposition of the operator as a sum of simple tensors with factors forming orthogonal families in their respective matrix algebras. It has been known that for unitary operators acting on two copies of C2, the operator Schmidt rank can only take the values 1, 2, and 4, the value 3 being forbidden. In this paper, we settle an open question, showing that the above obstruction is the only one occurring. We do so by constructing explicit examples of bipartite unitary operators of all possible operator Schmidt ranks, for arbitrary dimensions (n,m)≠(2,2).

Original languageEnglish
JournalLinear Algebra and Its Applications
Volume557
Pages (from-to)174-187
ISSN0024-3795
DOIs
Publication statusPublished - 2018

Keywords

  • Matrix realignment
  • Operator Schmidt rank
  • Tensor product
  • Unitary matrices

Fingerprint

Dive into the research topics of 'Operator Schmidt ranks of bipartite unitary matrices'. Together they form a unique fingerprint.

Cite this