Occurrence and diversity of fungal entomopathogens in soils of low and high Arctic Greenland

    16 Citations (Scopus)

    Abstract

    Knowledge of the occurrence, distribution and diversity of pathogens of insects and arachnids (entomopathogens) in the Arctic is very limited. Climate change is expected to affect Arctic terrestrial arthropod communities and therefore also host-pathogen interactions, given that entomopathogens are present. We conducted a survey of fungal entomopathogens in soil samples collected at four localities in Greenland; two at low Arctic sites (Ritenbenk and Disko Island) and two at sites in the high Arctic (Zackenberg and Danmarkshavn). Fungi were isolated from soil samples using larvae of the insect species Galleria mellonella (Lepidoptera) and Tenebrio molitor (Coleoptera) as baits providing evidence that the fungal isolates were indeed entomopathogenic. Five fungal species (Ascomycota; Hypocreales) were found: Isaria fumosorosea Wize, Isaria farinosa (Holmsk.) Fr., Beauveria bassiana (Bals.) Vuill., Beauveria pseudobassiana Rehner and Humber and Tolypocladium inflatum W. Gams (syn. = T. niveum). I. farinosa was found at all four localities, while I. fumosorosea was detected in single samples at each of three localities including both high Arctic sites. Only the locality on Disko Island revealed B. bassiana, whereas B. pseudobassiana was isolated at the three other sites. T. inflatum was only found on Disko Island and only isolated with T. molitor as a bait insect. The results document that fungal entomopathogens are widely distributed in the soil environment in Greenland. Entomopathogens should therefore be included in future studies of arthropod ecology in the Arctic.

    Original languageEnglish
    JournalPolar Biology
    Volume35
    Issue number9
    Pages (from-to)1439-1445
    Number of pages7
    ISSN0722-4060
    DOIs
    Publication statusPublished - Sept 2012

    Fingerprint

    Dive into the research topics of 'Occurrence and diversity of fungal entomopathogens in soils of low and high Arctic Greenland'. Together they form a unique fingerprint.

    Cite this