Abstract
Epitaxial semiconductor-superconductor hybrid materials are an excellent basis for studying mesoscopic and topological superconductivity, as the semiconductor inherits a hard superconducting gap while retaining tunable carrier density. Here, we investigate double-quantum-dot structures made from InAs nanowires with a patterned epitaxial Al two-facet shell that proximitizes two gate-defined segments along the nanowire. We follow the evolution of mesoscopic superconductivity and charging energy in this system as a function of magnetic field and voltage-tuned barriers. Interdot coupling is varied from strong to weak using side gates, and the ground state is varied between normal, superconducting and topological regimes by applying a magnetic field. We identify the topological transition by tracking the spacing between successive co-tunnelling peaks as a function of axial magnetic field and show that the individual dots host weakly hybridized Majorana modes.
Original language | English |
---|---|
Journal | Nature Nanotechnology |
Volume | 12 |
Pages (from-to) | 212-217 |
ISSN | 1748-3387 |
DOIs | |
Publication status | Published - 7 Mar 2017 |