Neuropsychiatric disease-associated genetic variants of the dopamine transporter display heterogeneous molecular phenotypes

Freja Herborg, Thorvald F Andreassen, Frida Berlin, Claus J Loland, Ulrik Gether

16 Citations (Scopus)

Abstract

Genetic factors are known to significantly contribute to the etiology of psychiatric diseases such as attention deficit hyperactivity disorder (ADHD) and autism spectrum and bipolar disorders, but the underlying molecular processes remain largely elusive. The dopamine transporter (DAT) has received continuous attention as a potential risk factor for psychiatric disease, as it is critical for dopamine homeostasis and serves as principal target for ADHD medications. Constrain metrics for the DAT-encoding gene, solute carrier family 6 member 3 (SLC6A3), indicate that missense mutations are under strong negative selection, pointing to pathophysiological outcomes when DAT function is compromised. Here, we systematically characterized six rare genetic variants of DAT (I312F, T356M, D421N, A559V, E602G, and R615C) identified in patients with neuropsychiatric disorders. We evaluated dopamine uptake and ligand interactions, along with ion coordination and electrophysiological properties, to elucidate functional phenotypes, and applied Zn2+ exposure and a substituted cysteine-accessibility approach to identify shared structural changes. Three variants (I312F, T356M, and D421N) exhibited impaired dopamine uptake associated with changes in ligand binding, ion coordination, and distinct conformational disturbances. Remarkably, we found that all three variants displayed gain-of-function electrophysiological phenotypes. I312F mediated an increased uncoupled anion conductance previously suggested to modulate neuronal excitability. T356M and D421N both mediated a cocaine-sensitive leakage of cations, which for T356M was potentiated by Zn2+, concurrent with partial functional rescue. Collectively, our findings support that gain of disruptive functions due to missense mutations in SLC6A3 may be key to understanding how dopaminergic dyshomeostasis arises in heterozygous carriers.

Original languageEnglish
JournalThe Journal of Biological Chemistry
Volume293
Issue number19
Pages (from-to)7250-7262
Number of pages13
ISSN0021-9258
DOIs
Publication statusPublished - 11 May 2018

Fingerprint

Dive into the research topics of 'Neuropsychiatric disease-associated genetic variants of the dopamine transporter display heterogeneous molecular phenotypes'. Together they form a unique fingerprint.

Cite this