Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

Mikkel Abrahamsen, Stephen Alstrup, Jacob Holm, Mathias Bæk Tejs Knudsen, Morten Stöckel

1 Citation (Scopus)
9 Downloads (Pure)

Abstract

A graph U is an induced universal graph for a family F of graphs if every graph in F is a vertex-induced subgraph of U. We give upper and lower bounds for the size of induced universal graphs for the family of graphs with n vertices of maximum degree D. Our new bounds improve several previous results except for the special cases where D is either near-constant or almost n/2. For constant even D Butler [Graphs and Combinatorics 2009] has shown O (nD/2) and recently Alon and Nenadov [SODA 2017] showed the same bound for constant odd D. For constant D Butler also gave a matching lower bound. For generals graphs, which corresponds to D = n, Alon [Geometric and Functional Analysis, to appear] proved the existence of an induced universal graph with (1 + o(1)) · 2(n-1)/2 vertices, leading to a smaller constant than in the previously best known bound of 16 · 2n/2 by Alstrup, Kaplan, Thorup, and Zwick [STOC 2015]. In this paper we give the following lower and upper bound of (⌊n/2⌋ ⌊D/2⌋ · n-O(1) and (⌊n/2⌋ ⌊D/2⌋ · 2O(√DlogD·log(n/D)), respectively, where the upper bound is the main contribution. The proof that it is an induced universal graph relies on a randomized argument. We also give a deterministic upper bound of O (nκ/(κ-1)!). These upper bounds are the best known when D ≤ n/2 -Ω(n3/4) and either D is even and D = ω(1) or D is odd and D = ω(log n/log log n). In this range we improve asymptotically on the previous best known results by Butler [Graphs and Combinatorics 2009], Esperet, Arnaud and Ochem [IPL 2008], Adjiashvili and Rotbart [ICALP 2014], Alon and Nenadov [SODA 2017], and Alon [Geometric and Functional Analysis, to appear].

Original languageEnglish
Title of host publication44th International Colloquium on Automata, Languages, and Programming (ICALP 201
EditorsIoannis Chatzigiannaki, Piotr Indyk, Fabian Kuhn, Anca Muscholl
PublisherSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Publication date1 Jul 2017
Pages1-14
Article number128
ISBN (Print)978-3-95977-041-5
DOIs
Publication statusPublished - 1 Jul 2017
Event44th International Colloquium on Automata, Languages, and Programming - Warzawa, Poland
Duration: 10 Jul 201714 Jul 2017
Conference number: 44

Conference

Conference44th International Colloquium on Automata, Languages, and Programming
Number44
Country/TerritoryPoland
CityWarzawa
Period10/07/201714/07/2017
SeriesLeibniz International Proceedings in Informatics (LIPIcs)
Volume80

Fingerprint

Dive into the research topics of 'Near-Optimal Induced Universal Graphs for Bounded Degree Graphs'. Together they form a unique fingerprint.

Cite this