TY - JOUR
T1 - Mutational mapping and modeling of the binding site for (S)-citalopram in the human serotonin transporter
AU - Andersen, Jacob
AU - Olsen, Lars
AU - Hansen, Kasper Bø
AU - Taboureau, Olivier
AU - Jørgensen, Flemming Steen
AU - Jørgensen, Anne Marie
AU - Bang-Andersen, Benny
AU - Egebjerg, Jan
AU - Strømgaard, Kristian
AU - Kristensen, Anders Skov
N1 - Kasper Bø Hansen er også tilknyttet:
Emory University School of Medicine, Atlanta, USA
PY - 2010/1/15
Y1 - 2010/1/15
N2 - The serotonin transporter (SERT) regulates extracellular levels of the neurotransmitter serotonin (5-hydroxytryptamine) in the brain by facilitating uptake of released 5-hydroxytryptamine into neuronal cells. SERT is the target for widely used antidepressant drugs, including imipramine, fluoxetine, and (S)-citalopram, which are competitive inhibitors of the transport function. Knowledge of the molecular details of the antidepressant binding sites in SERT has been limited due to lack of structural data on SERT. Here, we present a characterization of the (S)-citalopram binding pocket in human SERT (hSERT) using mutational and computational approaches. Comparative modeling and ligand docking reveal that (S)-citalopram fits into the hSERT substrate binding pocket, where (S)-citalopram can adopt a number of different binding orientations. We find, however, that only one of these binding modes is functionally relevant from studying the effects of 64 point mutations around the putative substrate binding site. The mutational mapping also identify novel hSERT residues that are crucial for (S)-citalopram binding. The model defines the molecular determinants for (S)-citalopram binding to hSERT and demonstrates that the antidepressant binding site overlaps with the substrate binding site.
AB - The serotonin transporter (SERT) regulates extracellular levels of the neurotransmitter serotonin (5-hydroxytryptamine) in the brain by facilitating uptake of released 5-hydroxytryptamine into neuronal cells. SERT is the target for widely used antidepressant drugs, including imipramine, fluoxetine, and (S)-citalopram, which are competitive inhibitors of the transport function. Knowledge of the molecular details of the antidepressant binding sites in SERT has been limited due to lack of structural data on SERT. Here, we present a characterization of the (S)-citalopram binding pocket in human SERT (hSERT) using mutational and computational approaches. Comparative modeling and ligand docking reveal that (S)-citalopram fits into the hSERT substrate binding pocket, where (S)-citalopram can adopt a number of different binding orientations. We find, however, that only one of these binding modes is functionally relevant from studying the effects of 64 point mutations around the putative substrate binding site. The mutational mapping also identify novel hSERT residues that are crucial for (S)-citalopram binding. The model defines the molecular determinants for (S)-citalopram binding to hSERT and demonstrates that the antidepressant binding site overlaps with the substrate binding site.
KW - Former Faculty of Pharmaceutical Sciences
U2 - 10.1074/jbc.M109.072587
DO - 10.1074/jbc.M109.072587
M3 - Journal article
C2 - 19892699
SN - 0021-9258
VL - 285
SP - 2051
EP - 2063
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 3
ER -