TY - JOUR
T1 - Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-Pb collisions root S-NN=5.02 TeV
AU - Adam, J.
AU - Adamova, D.
AU - Aggarwal, M.M.
AU - Rinella, G.A.
AU - Agnello, Maria
AU - Agrawal, N.
AU - Ahammed, Z.
AU - Ahmad, Shamim
AU - U. Ahn, S.
AU - Aiola, S.
AU - Bearden, Ian
AU - Bøggild, Hans
AU - Christensen, Christian Holm
AU - Gulbrandsen, Kristjan Herlache
AU - Gaardhøje, Jens Jørgen
AU - Dalsgaard, Hans Hjersing
AU - Nielsen, Børge Svane
AU - Hansen, Alexander Colliander
AU - Bilandzic, Ante
AU - Chojnacki, Marek
AU - Zaccolo, Valentina
AU - Zhou, You
AU - Bourjau, Christian Alexander
PY - 2016/9/10
Y1 - 2016/9/10
N2 - The production of charged pions, kaons and (anti)protons has been measured at mid-rapidity (−0.5NN=5.02 TeV using the ALICE detector at the LHC. Exploiting particle identification capabilities at high transverse momentum (pT), the previously published pT spectra have been extended to include measurements up to 20 GeV/c for seven event multiplicity classes. The pT spectra for pp collisions at s=7 TeV, needed to interpolate a pp reference spectrum, have also been extended up to 20 GeV/c to measure the nuclear modification factor (RpPb) in non-single diffractive p–Pb collisions. At intermediate transverse momentum (2T<10 GeV/c) the proton-to-pion ratio increases with multiplicity in p–Pb collisions, a similar effect is not present in the kaon-to-pion ratio. The pT dependent structure of such increase is qualitatively similar to those observed in pp and heavy-ion collisions. At high pT (>10 GeV/c), the particle ratios are consistent with those reported for pp and Pb–Pb collisions at the LHC energies. At intermediate pT the (anti)proton RpPb shows a Cronin-like enhancement, while pions and kaons show little or no nuclear modification. At high pT the charged pion, kaon and (anti)proton RpPb are consistent with unity within statistical and systematic uncertainties.
AB - The production of charged pions, kaons and (anti)protons has been measured at mid-rapidity (−0.5NN=5.02 TeV using the ALICE detector at the LHC. Exploiting particle identification capabilities at high transverse momentum (pT), the previously published pT spectra have been extended to include measurements up to 20 GeV/c for seven event multiplicity classes. The pT spectra for pp collisions at s=7 TeV, needed to interpolate a pp reference spectrum, have also been extended up to 20 GeV/c to measure the nuclear modification factor (RpPb) in non-single diffractive p–Pb collisions. At intermediate transverse momentum (2T<10 GeV/c) the proton-to-pion ratio increases with multiplicity in p–Pb collisions, a similar effect is not present in the kaon-to-pion ratio. The pT dependent structure of such increase is qualitatively similar to those observed in pp and heavy-ion collisions. At high pT (>10 GeV/c), the particle ratios are consistent with those reported for pp and Pb–Pb collisions at the LHC energies. At intermediate pT the (anti)proton RpPb shows a Cronin-like enhancement, while pions and kaons show little or no nuclear modification. At high pT the charged pion, kaon and (anti)proton RpPb are consistent with unity within statistical and systematic uncertainties.
U2 - 10.1016/j.physletb.2016.07.050
DO - 10.1016/j.physletb.2016.07.050
M3 - Journal article
SN - 0370-2693
VL - 760
SP - 720
EP - 735
JO - Physics Letters B: Particle Physics, Nuclear Physics and Cosmology
JF - Physics Letters B: Particle Physics, Nuclear Physics and Cosmology
ER -