Multi-lingual Opinion Mining on YouTube

Aliaksei Severyn, Alessandro Moschitti, Olga Uryupina, Barbara Plank, Katja Filippova

43 Citations (Scopus)

Abstract

In order to successfully apply opinion mining (OM) to the large amounts of user-generated content produced every day, we need robust models that can handle the noisy input well yet can easily be adapted to a new domain or language. We here focus on opinion mining for YouTube by (i) modeling classifiers that predict the type of a comment and its polarity, while distinguishing whether the polarity is directed towards the product or video; (ii) proposing a robust shallow syntactic structure (STRUCT) that adapts well when tested across domains; and (iii) evaluating the effectiveness on the proposed structure on two languages, English and Italian. We rely on tree kernels to automatically extract and learn features with better generalization power than traditionally used bag-of-word models. Our extensive empirical evaluation shows that (i) STRUCT outperforms the bag-of-words model both within the same domain (up to 2.6% and 3% of absolute improvement for Italian and English, respectively); (ii) it is particularly useful when tested across domains (up to more than 4% absolute improvement for both languages), especially when little training data is available (up to 10% absolute improvement) and (iii) the proposed structure is also effective in a lower-resource language scenario, where only less accurate linguistic processing tools are available.
Original languageEnglish
JournalInformation Processing & Management
Volume52
Issue number1
Pages (from-to)46-60
Number of pages15
ISSN0306-4573
DOIs
Publication statusPublished - Jan 2016

Fingerprint

Dive into the research topics of 'Multi-lingual Opinion Mining on YouTube'. Together they form a unique fingerprint.

Cite this