TY - JOUR
T1 - Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus
AU - Deng, Ling
AU - Kenchappa, Chandra Shekar
AU - Peng, Xu
AU - She, Qunxin
AU - Garrett, Roger Antony
PY - 2012/3
Y1 - 2012/3
N2 - CRISPR loci are essential components of the adaptive immune system of archaea and bacteria. They consist of long arrays of repeats separated by DNA spacers encoding guide RNAs (crRNA), which target foreign genetic elements. Cbp1 (CRISPR DNA repeat binding protein) binds specifically to the multiple direct repeats of CRISPR loci of members of the acidothermophilic, crenarchaeal order Sulfolobales. cbp1 gene deletion from Sulfolobus islandicus REY15A produced a strong reduction in pre-crRNA yields from CRISPR loci but did not inhibit the foreign DNA targeting capacity of the CRISPR/Cas system. Conversely, overexpression of Cbp1 in S. islandicus generated an increase in pre-crRNA yields while the level of reverse strand transcripts from CRISPR loci remained unchanged. It is proposed that Cbp1 modulates production of longer pre-crRNA transcripts from CRISPR loci. A possible mechanism is that it minimizes interference from potential transcriptional signals carried on spacers deriving from A-T-rich genetic elements and, occasionally, on DNA repeats. Supporting evidence is provided by microarray and northern blotting analyses, and publicly available whole-transcriptome data for S. solfataricus P2.
AB - CRISPR loci are essential components of the adaptive immune system of archaea and bacteria. They consist of long arrays of repeats separated by DNA spacers encoding guide RNAs (crRNA), which target foreign genetic elements. Cbp1 (CRISPR DNA repeat binding protein) binds specifically to the multiple direct repeats of CRISPR loci of members of the acidothermophilic, crenarchaeal order Sulfolobales. cbp1 gene deletion from Sulfolobus islandicus REY15A produced a strong reduction in pre-crRNA yields from CRISPR loci but did not inhibit the foreign DNA targeting capacity of the CRISPR/Cas system. Conversely, overexpression of Cbp1 in S. islandicus generated an increase in pre-crRNA yields while the level of reverse strand transcripts from CRISPR loci remained unchanged. It is proposed that Cbp1 modulates production of longer pre-crRNA transcripts from CRISPR loci. A possible mechanism is that it minimizes interference from potential transcriptional signals carried on spacers deriving from A-T-rich genetic elements and, occasionally, on DNA repeats. Supporting evidence is provided by microarray and northern blotting analyses, and publicly available whole-transcriptome data for S. solfataricus P2.
U2 - 10.1093/nar/gkr1111
DO - 10.1093/nar/gkr1111
M3 - Journal article
C2 - 22139923
SN - 0305-1048
VL - 40
SP - 2470
EP - 2480
JO - Nucleic Acids Research
JF - Nucleic Acids Research
IS - 6
ER -