Metagenomic analyses reveal no differences in genes involved in cellulose degradation under different tillage treatments

Maria De Vries, Anne Schöler, Julia Ertl, Zhuofei Xu, Michael Schloter

21 Citations (Scopus)

Abstract

Incorporation of plant litter is a frequent agricultural practice to increase nutrient availability in soil, and relies heavily on the activity of cellulose-degrading microorganisms. Here we address the question of how different tillage treatments affect soil microbial communities and their cellulose-degrading potential in a long-term agricultural experiment. To identify potential differences in microbial taxonomy and functionality, we generated six soil metagenomes of conventional (CT) and reduced (RT) tillage-treated topsoil samples, which differed in their potential extracellular cellulolytic activity as well as their microbial biomass. Taxonomic analysis of metagenomic data revealed few differences between RT and CT, and a dominance of Proteobacteria and Actinobacteria, whereas eukaryotic phyla were not prevalent. Prediction of cellulolytic enzymes revealed glycoside hydrolase families 1, 3 and 94, auxiliary activity family 8 and carbohydrate-binding module 2 as the most abundant in soil. These were annotated mainly to the phyla of Proteobacteria, Actinobacteria and Bacteroidetes. These results suggest that the observed higher cellulolytic activity in RT soils can be explained by a higher microbial biomass or changed expression levels but not by shifts in the soil microbiome. Overall, this study reveals the stability of soil microbial communities and cellulolytic gene composition under the investigated tillage treatments.

Original languageEnglish
JournalFEMS Microbiology Ecology
Volume91
Issue number7
Pages (from-to)1-10
Number of pages10
ISSN0168-6496
DOIs
Publication statusPublished - Jul 2015

Fingerprint

Dive into the research topics of 'Metagenomic analyses reveal no differences in genes involved in cellulose degradation under different tillage treatments'. Together they form a unique fingerprint.

Cite this