Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-(13)C]Glucose and [1,2-(13)C]Acetate as Substrates

Laura F McNair, Rasmus Kornfelt, Anne B Walls, Jens Velde Andersen, Blanca I Aldana, Jakob D Nissen, Arne Schousboe, Helle S Waagepetersen

12 Citations (Scopus)

Abstract

Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices prepared from 16 to 18-week-old mice were incubated for 15-90 min with unlabeled glucose in combination with [U-(13)C]glucose or [1,2-(13)C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent to incubation, slices were extracted and extracts analyzed for (13)C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation media. Based on the measured (13)C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of (13)C-labeling observed with [U-(13)C]glucose in slices from cerebral cortex and hippocampus revealed no significant regional differences regarding glycolytic or total TCA cycle activities. On the contrary, results from the incubations with [1,2-(13)C]acetate suggest a higher capacity of the astrocytic TCA cycle in hippocampus compared to cerebral cortex. Finally, we propose a new approach for assessing compartmentation of metabolite pools between astrocytes and neurons using (13)C-labeling (%) data obtained from mass spectrometry. Based on this approach we suggest that cellular metabolic compartmentation in hippocampus and cerebral cortex is very similar.

Original languageEnglish
JournalNeurochemical Research
Volume42
Issue number3
Pages (from-to)810-826
Number of pages17
ISSN0364-3190
DOIs
Publication statusPublished - 1 Mar 2017

Fingerprint

Dive into the research topics of 'Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-(13)C]Glucose and [1,2-(13)C]Acetate as Substrates'. Together they form a unique fingerprint.

Cite this