Mesoporous silicas templated by heterocyclic amino acid derivatives: Biomimetic synthesis and drug release application

Heran Li, Jia Ke, Haiting Li, Chen Wei, Xueqian Wu, Jing Li, Yang Yang, Lu Xu, Hongzhuo Liu, Sanming Li*, Mingshi Yang, Minjei Wei

*Corresponding author for this work
    6 Citations (Scopus)

    Abstract

    The present paper reported a biomimetic synthesis of mesoporous silicas (BMSs) at room temperature by using synthesized polymers (C 16 -L-His, C 16 -L-Pro and C 16 -L-Trp) which derived from amino acid with ring structures as template under basic condition via co-structural-directing-agent method. The formation mechanism of BMSs and effect of initial synthesis conditions (such as surfactant structure, pH and co-solvents) on morphology and structure of BMSs were systematically studied. Synthesized BMSs were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption/desorption isotherms. The results showed that the surfactant structure was the dominant factor to direct the final mesostructure of BMSs, since the structure of surfactant affected the structure and size of clusters. Meanwhile the generation of BMSs required very rigorous alkaline condition which controlled the ionization degree of the surfactant and thus contributing to adequate stacking energy. Higher pH resulted in construction of channels with higher curvature. The presence of ethanol was found to facilitate the formation of BMSs with larger particle size. In application, aspirin can be loaded into BMSs with high efficiency, and the drug crystalline state of aspirin transformed from crystalline state to amorphous state during this process, which undoubtedly lead to the improvement of drug dissolution from 72.8% to 100% within 90 min. It is convincible that the biomimetic method presented here provided novel insight on precisely control of mesoporous silica and undoubtedly promoted the application of mesoporous silica materials.

    Original languageEnglish
    JournalMaterials Science and Engineering C
    Volume93
    Pages (from-to)407-418
    Number of pages12
    ISSN0928-4931
    DOIs
    Publication statusPublished - 2018

    Keywords

    • Biomimetic synthesis nanomaterial
    • Drug delivery
    • Dynamic self-assembly
    • Mesoporous silica

    Fingerprint

    Dive into the research topics of 'Mesoporous silicas templated by heterocyclic amino acid derivatives: Biomimetic synthesis and drug release application'. Together they form a unique fingerprint.

    Cite this