Measurement of transverse energy at midrapidity in Pb-Pb collisions at root s(NN)=2.76 TeV

J. Adam, D. Adamova, M.M. Aggarwal, G.A. Rinella, Maria Agnello, N. Agrawal, Z. Ahammed, Shamim Ahmad, S. U. Ahn, S. Aiola, Ian Bearden, Hans Bøggild, Christian Holm Christensen, Kristjan Herlache Gulbrandsen, Jens Jørgen Gaardhøje, Hans Hjersing Dalsgaard, Børge Svane Nielsen, Alexander Colliander Hansen, Ante Bilandzic, Marek ChojnackiValentina Zaccolo, You Zhou, Christian Alexander Bourjau

24 Citations (Scopus)
32 Downloads (Pure)

Abstract

We report the transverse energy (ET) measured with ALICE at midrapidity in Pb-Pb collisions at sNN=2.76 TeV as a function of centrality. The transverse energy was measured using identified single-particle tracks. The measurement was cross checked using the electromagnetic calorimeters and the transverse momentum distributions of identified particles previously reported by ALICE. The results are compared to theoretical models as well as to results from other experiments. The mean ET per unit pseudorapidity (η), (dET/dη), in 0%-5% central collisions is 1737±6(stat.)±97(sys.) GeV. We find a similar centrality dependence of the shape of (dET/dη) as a function of the number of participating nucleons to that seen at lower energies. The growth in (dET/dη) at the LHC energies exceeds extrapolations of low-energy data. We observe a nearly linear scaling of (dET/dη) with the number of quark participants. With the canonical assumption of a 1 fm/c formation time, we estimate that the energy density in 0%-5% central Pb-Pb collisions at sNN=2.76 TeV is 12.3±1.0GeV/fm3 and that the energy density at the most central 80fm2 of the collision is at least 21.5±1.7GeV/fm3. This is roughly 2.3 times that observed in 0%-5% central Au-Au collisions at sNN=200 GeV.

Original languageEnglish
Article number034903
JournalPhysical Review C (Nuclear Physics)
Volume94
Issue number3
ISSN0556-2813
DOIs
Publication statusPublished - 15 Sept 2016

Fingerprint

Dive into the research topics of 'Measurement of transverse energy at midrapidity in Pb-Pb collisions at root s(NN)=2.76 TeV'. Together they form a unique fingerprint.

Cite this