TY - JOUR
T1 - Measurement of the distributions of event-by-event flow harmonics in lead-lead collisions at root s(NN)=2.76 TeV with the ATLAS detector at the LHC
AU - Aad, G.
AU - Abajyan, T.
AU - Abbott, B.
AU - Abdallah, J.
AU - Khalek, S.A.
AU - Dam, Mogens
AU - Hansen, Jørgen Beck
AU - Hansen, Peter Henrik
AU - Hansen, Jørn Dines
AU - Hansen, John Renner
AU - Heisterkamp, Simon Johann Franz
AU - Jørgensen, Morten Dam
AU - Mehlhase, Sascha
AU - Boelaert, Nele Maria Philomena
AU - Klinkby, Esben Bryndt
AU - Løvschall-Jensen, Ask Emil
AU - Nilsson, Björn Stefan
AU - Petersen, Troels Christian
AU - Xella, Stefania
PY - 2013/11/1
Y1 - 2013/11/1
N2 - The distributions of event-by-event harmonic flow coefficients υn for n = 2-4 are measured in √sNN = 2.76TeV Pb+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using charged particles with transverse momentum pT > 0.5GeV and in the pseudorapidity range |η| < 2.5 in a dataset of approximately 7 μb-1 recorded in 2010. The shapes of the υn distributions suggest that the associated flow vectors are described by a two-dimensional Gaussian function in central collisions for υ2 and over most of the measured centrality range for υ3 and υ4. Significant deviations from this function are observed for υ2 in mid-central and peripheral collisions, and a small deviation is observed for υ3 in mid-central collisions. In order to be sensitive to these deviations, it is shown that the commonly used multi-particle cumulants, involving four particles or more, need to be measured with a precision better than a few percent. The υn distributions are also measured independently for charged particles with 0.5 < pT < 1 GeV and pT > 1 GeV. When these distributions are rescaled to the same mean values, the adjusted shapes are found to be nearly the same for these two pT ranges. The υn distributions are compared with the eccentricity distributions from two models for the initial collision geometry: a Glauber model and a model that includes corrections to the initial geometry due to gluon saturation effects. Both models fail to describe the experimental data consistently over most of the measured centrality range. Copyright CERN.
AB - The distributions of event-by-event harmonic flow coefficients υn for n = 2-4 are measured in √sNN = 2.76TeV Pb+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using charged particles with transverse momentum pT > 0.5GeV and in the pseudorapidity range |η| < 2.5 in a dataset of approximately 7 μb-1 recorded in 2010. The shapes of the υn distributions suggest that the associated flow vectors are described by a two-dimensional Gaussian function in central collisions for υ2 and over most of the measured centrality range for υ3 and υ4. Significant deviations from this function are observed for υ2 in mid-central and peripheral collisions, and a small deviation is observed for υ3 in mid-central collisions. In order to be sensitive to these deviations, it is shown that the commonly used multi-particle cumulants, involving four particles or more, need to be measured with a precision better than a few percent. The υn distributions are also measured independently for charged particles with 0.5 < pT < 1 GeV and pT > 1 GeV. When these distributions are rescaled to the same mean values, the adjusted shapes are found to be nearly the same for these two pT ranges. The υn distributions are compared with the eccentricity distributions from two models for the initial collision geometry: a Glauber model and a model that includes corrections to the initial geometry due to gluon saturation effects. Both models fail to describe the experimental data consistently over most of the measured centrality range. Copyright CERN.
U2 - 10.1007/JHEP11(2013)183
DO - 10.1007/JHEP11(2013)183
M3 - Journal article
SN - 1126-6708
VL - 2013
JO - Journal of High Energy Physics (Online)
JF - Journal of High Energy Physics (Online)
IS - 11
M1 - 183
ER -