TY - JOUR
T1 - Measurement of the azimuthal anisotropy of charged particles produced in root s NN=5.02 TeV Pb+ Pb collisions with the ATLAS detector
AU - Aaboud, M.
AU - Aad, G.
AU - Abbott, B.
AU - Abdinov, O.
AU - Abeloos, B
AU - Abhayasinghe, DK
AU - Abidi, S.H.
AU - Abouzeid, Ossama Sherif Alexander
AU - Abraham, NL
AU - Abramowicz, H.
AU - Abreu, H.
AU - Abulaiti, Y.
AU - Acharya, B.S.
AU - Adachi, Sosuke
AU - Adamczyk, L.
AU - Adelman, J.
AU - Adersberger, M.
AU - Adiguzel, A.
AU - Adye, T.
AU - Affolder, A. A.
AU - Afik, Y.
AU - Agheorghiesei, C.
AU - Aguilar-Saavedra, J. A.
AU - Ahmadov, F.
AU - Bajic, Milena
AU - Besjes, Geert-Jan
AU - de Almeida Dias, Flavia
AU - Alonso Diaz, Alejandro
AU - Galster, Gorm Aske Gram Krohn
AU - Hansen, Peter Henrik
AU - Hansen, Jørn Dines
AU - Hansen, Jørgen Beck
AU - Dam, Mogens
AU - Monk, James William
AU - Stark, Simon Holm
AU - Thiele, Fabian A.J.
AU - Petersen, Troels Christian
AU - Wiglesworth, Graig
AU - Xella, Stefania
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Measurements of the azimuthal anisotropy in lead–lead collisions at sNN = 5.02 TeV are presented using a data sample corresponding to 0.49 nb - 1 integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for “ultra-central” collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, v2–v7, which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics vn over wide ranges of the transverse momentum, 0.5 < pT< 60 GeV, the pseudorapidity, | η| < 2.5, and the collision centrality 0–80%. Results from different methods are compared and discussed in the context of previous and recent measurements in Pb+Pb collisions at sNN = 2.76 TeV and 5.02 TeV. In particular, the shape of the pTdependence of elliptic or triangular flow harmonics is observed to be very similar at different centralities after scaling the vn and pTvalues by constant factors over the centrality interval 0–60% and the pTrange 0.5 < pT< 5 GeV.
AB - Measurements of the azimuthal anisotropy in lead–lead collisions at sNN = 5.02 TeV are presented using a data sample corresponding to 0.49 nb - 1 integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for “ultra-central” collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, v2–v7, which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics vn over wide ranges of the transverse momentum, 0.5 < pT< 60 GeV, the pseudorapidity, | η| < 2.5, and the collision centrality 0–80%. Results from different methods are compared and discussed in the context of previous and recent measurements in Pb+Pb collisions at sNN = 2.76 TeV and 5.02 TeV. In particular, the shape of the pTdependence of elliptic or triangular flow harmonics is observed to be very similar at different centralities after scaling the vn and pTvalues by constant factors over the centrality interval 0–60% and the pTrange 0.5 < pT< 5 GeV.
U2 - 10.1140/epjc/s10052-018-6468-7
DO - 10.1140/epjc/s10052-018-6468-7
M3 - Journal article
SN - 1434-6044
VL - 78
JO - The European Physical Journal C: Particles and Fields
JF - The European Physical Journal C: Particles and Fields
IS - 12
M1 - 997
ER -