Mathematical modeling of the glucose-insulin system: a review

Pasquale Palumbo, Susanne Ditlevsen, Alessandro Bertuzzi, Andrea De Gaetano

76 Citations (Scopus)

Abstract

Mathematical modeling of the glucose-insulin feedback system is necessary to the understanding of the homeostatic control, to analyze experimental data, to identify and quantify relevant biophysical parameters, to design clinical trials and to evaluate diabetes prevention or disease modification therapies. Much work has been made over the last 30. years, and the time now seems ripe to provide a comprehensive review. The one here proposed is focused on the most important clinical/experimental tests performed to understand the mechanism of glucose homeostasis. The review proceeds from models of pancreatic insulin production, with a coarser/finer level of detail ranging over cellular and subcellular scales, to short-term organ/tissue models accounting for the intra-venous and the oral glucose tolerance tests as well as for the euglycemic hyperinsulinemic clamp, to total-body, long-term diabetes models aiming to represent disease progression in terms of β-cell population dynamics over a long period of years.

Original languageEnglish
JournalMathematical Biosciences
Volume244
Issue number3
Pages (from-to)69-81
ISSN0025-5564
DOIs
Publication statusPublished - Aug 2013

Fingerprint

Dive into the research topics of 'Mathematical modeling of the glucose-insulin system: a review'. Together they form a unique fingerprint.

Cite this