Abstract
Transcriptional changes control β-cell survival in response to inflammatory stress. Posttranslational modifications of histone and non-histone transcriptional regulators activate or repress gene transcription, but the link to cell-fate signaling is unclear. Inhibition of lysine deacetylases (KDACs) protects β cells from cytokine-induced apoptosis and reduces type 1 diabetes incidence in animals. We hypothesized that also lysine demethylases (KDMs) regulate β-cell fate in response to inflammatory stress. Expression of the demethylase Kdm6B was upregulated by proinflammatory cytokines suggesting a possible role in inflammation-induced β-cell destruction. Inhibition of KDM6 demethylases using the selective inhibitor GSK-J4 protected insulin-producing cells and human and mouse islets from cytokine-induced apoptosis by blunting nuclear factor (NF)-κB signaling and endoplasmic reticulum (ER) stress response gene expression. GSK-J4 furthermore increased expression of insulin gene and glucose-stimulated insulin secretion. Expression of genes regulating purinergic and cytokine ligand-receptor interactions was downregulated following GSK-J4 exposure, while expression of genes involved in cell maintenance and survival was upregulated. These data suggest that KDMs are important regulators of inflammation-induced β-cell dysfunction and death.
Original language | English |
---|---|
Journal | Molecular and Cellular Endocrinology |
Volume | 460 |
Pages (from-to) | 47-56 |
Number of pages | 10 |
ISSN | 0303-7207 |
DOIs | |
Publication status | Published - 15 Jan 2018 |
Keywords
- Apoptosis
- beta cells
- Inflammation
- Lysine demethylases
- Gene expression
- Diabetes