TY - JOUR
T1 - Low-volume high-intensity swim training is superior to high-volume low-intensity training in relation to insulin sensitivity and glucose control in inactive middle-aged women
AU - Connolly, Luke J
AU - Nordsborg, Nikolai Baastrup
AU - Nyberg, Michael Permin
AU - Weihe, Pál
AU - Krustrup, Peter
AU - Mohr, Magni
N1 - CURIS 2016 NEXS 188
PY - 2016/10/1
Y1 - 2016/10/1
N2 - Purpose: We tested the hypothesis that low-volume high-intensity swimming has a larger impact on insulin sensitivity and glucose control than high-volume low-intensity swimming in inactive premenopausal women with mild hypertension. Methods: Sixty-two untrained premenopausal women were randomised to an inactive control (n = 20; CON), a high-intensity low-volume (n = 21; HIT) or a low-intensity high-volume (n = 21; LIT) training group. During the 15-week intervention period, HIT performed 3 weekly 6–10 × 30-s all-out swimming intervals (average heart rate (HR) = 86 ± 3 % HRmax) interspersed by 2-min recovery periods and LIT swam continuously for 1 h at low intensity (average HR = 73 ± 3 % HRmax). Fasting blood samples were taken and an oral glucose tolerance test (OGTT) was conducted pre- and post-intervention. Results: After HIT, resting plasma [insulin] was lowered (17 ± 34 %; P < 0.05) but remained similar after LIT and CON. Following HIT, 60-min OGTT plasma [insulin] and [glucose] was lowered (24 ± 30 % and 10 ± 16 %; P < 0.05) but remained similar after LIT and CON. Total area under the curve for plasma [glucose] was lower (P < 0.05) after HIT than LIT (660 ± 141 vs. 860 ± 325 mmol min L−1). Insulin sensitivity (HOMA-IR) had increased (P < 0.05) by 22 ± 34 % after HIT, with no significant change after LIT or CON, respectively. Plasma soluble intracellular cell adhesion molecule 1 was lowered (P < 0.05) by 4 ± 8 and 3 ± 9 % after HIT and CON, respectively, while plasma soluble vascular cell adhesion molecule 1 had decreased (P < 0.05) by 8 ± 23 % after HIT only. Conclusions: These findings suggest that low-volume high-intensity intermittent swimming is an effective and time-efficient training strategy for improving insulin sensitivity, glucose control and biomarkers of vascular function in inactive, middle-aged mildly hypertensive women.
AB - Purpose: We tested the hypothesis that low-volume high-intensity swimming has a larger impact on insulin sensitivity and glucose control than high-volume low-intensity swimming in inactive premenopausal women with mild hypertension. Methods: Sixty-two untrained premenopausal women were randomised to an inactive control (n = 20; CON), a high-intensity low-volume (n = 21; HIT) or a low-intensity high-volume (n = 21; LIT) training group. During the 15-week intervention period, HIT performed 3 weekly 6–10 × 30-s all-out swimming intervals (average heart rate (HR) = 86 ± 3 % HRmax) interspersed by 2-min recovery periods and LIT swam continuously for 1 h at low intensity (average HR = 73 ± 3 % HRmax). Fasting blood samples were taken and an oral glucose tolerance test (OGTT) was conducted pre- and post-intervention. Results: After HIT, resting plasma [insulin] was lowered (17 ± 34 %; P < 0.05) but remained similar after LIT and CON. Following HIT, 60-min OGTT plasma [insulin] and [glucose] was lowered (24 ± 30 % and 10 ± 16 %; P < 0.05) but remained similar after LIT and CON. Total area under the curve for plasma [glucose] was lower (P < 0.05) after HIT than LIT (660 ± 141 vs. 860 ± 325 mmol min L−1). Insulin sensitivity (HOMA-IR) had increased (P < 0.05) by 22 ± 34 % after HIT, with no significant change after LIT or CON, respectively. Plasma soluble intracellular cell adhesion molecule 1 was lowered (P < 0.05) by 4 ± 8 and 3 ± 9 % after HIT and CON, respectively, while plasma soluble vascular cell adhesion molecule 1 had decreased (P < 0.05) by 8 ± 23 % after HIT only. Conclusions: These findings suggest that low-volume high-intensity intermittent swimming is an effective and time-efficient training strategy for improving insulin sensitivity, glucose control and biomarkers of vascular function in inactive, middle-aged mildly hypertensive women.
U2 - 10.1007/s00421-016-3441-8
DO - 10.1007/s00421-016-3441-8
M3 - Journal article
C2 - 27473445
SN - 1439-6319
VL - 116
SP - 1889
EP - 1897
JO - European Journal of Applied Physiology
JF - European Journal of Applied Physiology
IS - 10
ER -