Abstract
The advent of advanced single molecule measurements heralded the arrival of a wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways not deducible by conventional bulk assays. They offered the direct observation and quantification of the abundance and life time of multiple states and transient intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements, thus providing unprecedented insights into complex biological processes. Here we survey the current state of the art in single-molecule fluorescence microscopy methodology for studying the mechanism of enzymatic activity and the insights on protein functional dynamics. We will initially discuss the strategies employed to date, their limitations and possible ways to overcome them, and finally how single enzyme kinetics can advance our understanding on mechanisms underlying function and regulation of proteins. Special Issue Comment: This review focuses on functional dynamics of individual enzymes and is related to the review on ion channels by Lu,44 the reviews on mathematical treatment of Flomenbom45 and Sach et al.,46 and review on FRET by Ruedas-Rama et al.41
Original language | English |
---|---|
Journal | Biophysical Reviews and Letters |
Volume | 8 |
Issue number | 3&4 |
Pages (from-to) | 137-160 |
Number of pages | 24 |
ISSN | 1793-0480 |
DOIs | |
Publication status | Published - Dec 2013 |