TY - JOUR
T1 - Innervation is higher above Bone Remodeling Surfaces and in Cortical Pores in Human Bone
T2 - Lessons from patients with primary hyperparathyroidism
AU - Sayilekshmy, Manasi
AU - Hansen, Rie Bager
AU - Delaissé, Jean Marie
AU - Rolighed, Lars
AU - Andersen, Thomas Levin
AU - Heegaard, Anne Marie
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Mounting evidence from animal studies suggests a role of the nervous system in bone physiology. However, little is known about the nerve fiber localization to human bone compartments and bone surface events. This study reveals the density and distribution of nerves in human bone and the association of nerve profiles to bone remodeling events and vascular structures in iliac crest biopsies isolated from patients diagnosed with primary hyperparathyroidism (PHPT). Bone sections were sequentially double-immunostained for tyrosine hydroxylase (TH), a marker for sympathetic nerves, followed by protein gene product 9.5 (PGP9.5), a pan-neuronal marker, or double-immunostained for either PGP9.5 or TH in combination with CD34, an endothelial marker. In the bone marrow, the nerve profile density was significantly higher above remodeling surfaces as compared to quiescent bone surfaces. Ninety-five percentages of all nerve profiles were associated with vascular structures with the highest association to capillaries and arterioles. Moreover, vasculature with innervation was denser above bone remodeling surfaces. Finally, the nerve profiles density was 5-fold higher in the intracortical pores compared to bone marrow and periosteum. In conclusion, the study shows an anatomical link between innervation and bone remodeling in human bone.
AB - Mounting evidence from animal studies suggests a role of the nervous system in bone physiology. However, little is known about the nerve fiber localization to human bone compartments and bone surface events. This study reveals the density and distribution of nerves in human bone and the association of nerve profiles to bone remodeling events and vascular structures in iliac crest biopsies isolated from patients diagnosed with primary hyperparathyroidism (PHPT). Bone sections were sequentially double-immunostained for tyrosine hydroxylase (TH), a marker for sympathetic nerves, followed by protein gene product 9.5 (PGP9.5), a pan-neuronal marker, or double-immunostained for either PGP9.5 or TH in combination with CD34, an endothelial marker. In the bone marrow, the nerve profile density was significantly higher above remodeling surfaces as compared to quiescent bone surfaces. Ninety-five percentages of all nerve profiles were associated with vascular structures with the highest association to capillaries and arterioles. Moreover, vasculature with innervation was denser above bone remodeling surfaces. Finally, the nerve profiles density was 5-fold higher in the intracortical pores compared to bone marrow and periosteum. In conclusion, the study shows an anatomical link between innervation and bone remodeling in human bone.
U2 - 10.1038/s41598-019-41779-w
DO - 10.1038/s41598-019-41779-w
M3 - Journal article
C2 - 30926835
AN - SCOPUS:85063917720
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 5361
ER -