Abstract
We define infinitary Combinatory Reduction Systems (iCRSs), thus providing the first notion of infinitary higher-order rewriting. The systems defined are sufficiently general that ordinary infinitary term rewriting and infinitary λ-calculus are special cases. Furthermore, we generalise a number of known results from first-order infinitary rewriting and infinitary λ-calculus to iCRSs. In particular, for fully-extended, left-linear iCRSs we prove the well-known compression property, and for orthogonal iCRSs we prove that (1) if a set of redexes U has a complete development, then all complete developments of U end in the same term and that (2) any tiling diagram involving strongly convergent reductions S and T can be completed iff at least one of S/T and T/S is strongly convergent. We also prove an ancillary result of independent interest: a set of redexes in an orthogonal iCRS has a complete development iff the set has the so-called finite jumps property.
Original language | English |
---|---|
Journal | Information and Computation |
Volume | 209 |
Issue number | 6 |
Pages (from-to) | 893-926 |
Number of pages | 34 |
ISSN | 0890-5401 |
DOIs | |
Publication status | Published - Jun 2011 |