Abstract
Human disease outbreaks caused by norovirus (NoV) following consumption of contaminated raspberries are an increasing problem. An efficient method to decontaminate the fragile raspberries and the equipment used for processing would be an important step in ensuring food safety. A potential surface treatment that combines pressurized steam and high-power ultrasound (steam-ultrasound) was assessed for its efficacy to inactivate human NoV surrogates: coliphage (MS2), feline calicivirus (FCV), and murine norovirus (MNV) inoculated on plastic surfaces and MS2 inoculated on fresh raspberries. The amounts of infectious virus and viral genomes were determined by plaque assay and reverse transcription-real time quantitative PCR (RT-qPCR), respectively. On plastic surfaces, an inactivation of >99.99% was obtained for both MS2 and FCV, corresponding to a 9.1-log and >4.8-log reduction after 1 or 3 s of treatment, respectively; while a 3.7-log (99.97%) reduction of MNV was reached after 3 s of treatment. However, on fresh raspberries only a 1-log reduction (~89%) of MS2 could be achieved after 1 s of treatment, at which point damage to the texture of the fresh raspberries was evident. Increasing treatment time (0 to 3 s) resulted in negligible reductions of viral genome titers of MS2, FCV, and MNV on plastic surfaces as well as of MS2 inoculated on raspberries. Steamultrasound treatment in its current format does not appear to be an appropriate method to achieve sufficient decontamination of NoV-contaminated raspberries. However, steam-ultrasound may be used to decontaminate smooth surface areas and utensils in food production and processing environments.
Original language | English |
---|---|
Journal | Journal of Food Protection |
Volume | 75 |
Issue number | 2 |
Pages (from-to) | 376-381 |
Number of pages | 6 |
ISSN | 0362-028X |
DOIs | |
Publication status | Published - 2012 |
Keywords
- Animals
- Colony Count, Microbial
- Consumer Product Safety
- Food Contamination
- Food Microbiology
- Fruit
- Humans
- Norovirus
- Plastics
- Steam
- Ultrasonics
- Virus Inactivation