In vivo evaluation of PEGylated ⁶⁴Cu-liposomes with theranostic and radiotherapeutic potential using micro PET/CT

Anncatrine Luisa Petersen, Jonas Rosager Henriksen, Tina Binderup, Dennis Ringkjøbing Elema, Palle Hedengran Rasmussen, Anne Mette Hag, Andreas Kjær, Thomas Lars Andresen

26 Citations (Scopus)

Abstract

PURPOSE: The objective of this study was to evaluate the potential of PEGylated (64)Cu-liposomes in clinical diagnostic positron emission tomography (PET) imaging and PEGylated (177)Lu-liposomes in internal tumor radiotherapy through in vivo characterization and dosimetric analysis in a human xenograft mouse model.

METHODS: Liposomes with 5 and 10 mol% PEG were characterized with respect to size, charge, and (64)Cu- and (177)Lu-loading efficiency. The tumor imaging potential of (64)Cu-loaded liposomes was evaluated in terms of in vivo biodistribution, tumor accumulation and tumor-to-muscle (T/M) ratios, using PET imaging. The potential of PEGylated liposomes for diagnostic and therapeutic applications was further evaluated through dosimetry analysis using OLINDA/EXM software. The (64)Cu-liposomes were used as biological surrogates to estimate the organ and tumor kinetics of (177)Lu-liposomes.

RESULTS: High remote loading efficiency (>95 %) was obtained for both (64)Cu and (177)Lu radionuclides with PEGylated liposomes, and essentially no leakage of the encapsulated radionuclide was observed upon storage and after serum incubation for 24 h at 37 °C. The 10 mol% PEG liposomes showed higher tumor accumulation (6.2 ± 0.2 %ID/g) than the 5 mol% PEG liposomes, as evaluated by PET imaging. The dosimetry analysis of the (64)Cu-liposomes estimated an acceptable total effective dose of 3.3·10(-2) mSv/MBq for diagnostic imaging in patients. A high absorbed tumor dose (114 mGy/MBq) was estimated for the potential radiotherapeutic (177)Lu-liposomes.

CONCLUSION: The overall preclinical profile of PEGylated (64)Cu-liposomes showed high potential as a new PET theranostic tracer for imaging in humans. Dosimetry results predicted that initial administered activity of 200 MBq of (64)Cu-liposomes should be acceptable in patients. Work is in progress to validate the utility of PEGylated (64)Cu-liposomes in a clinical research programme. The high absorbed tumor dose (114 mGy/MBq) estimated for (177)Lu-liposomes and the preliminary dosimetric studies justify further therapeutic and dosimetry investigation of (177)Lu-liposomes in animals before potential testing in man.

Original languageEnglish
JournalEuropean Journal of Nuclear Medicine and Molecular Imaging
Volume43
Issue number5
Pages (from-to)941-52
Number of pages12
ISSN1619-7070
DOIs
Publication statusPublished - 1 May 2016

Keywords

  • Animals
  • Cell Line, Tumor
  • Copper Radioisotopes
  • Humans
  • Liposomes
  • Lutetium
  • Mice
  • Mice, Nude
  • Neuroendocrine Tumors
  • Polyethylene Glycols
  • Positron Emission Tomography Computed Tomography
  • Radiopharmaceuticals
  • Tissue Distribution
  • Journal Article
  • Research Support, Non-U.S. Gov't

Fingerprint

Dive into the research topics of 'In vivo evaluation of PEGylated ⁶⁴Cu-liposomes with theranostic and radiotherapeutic potential using micro PET/CT'. Together they form a unique fingerprint.

Cite this